Anemia in Hospitalized Patients Vampirism and Other Tales

Deborah Siegal MD MSc FRCPC

Associate Professor, University of Ottawa Scientist, Ottawa Hospital Research Institute Tier 2 Canada Research Chair

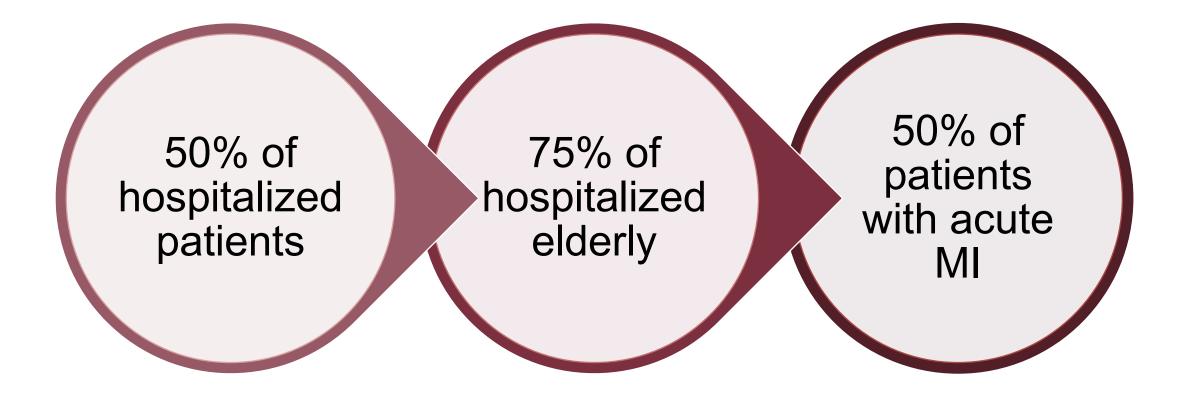
November 17, 2023

Disclosures

I have received honoraria paid indirectly to my research institute from AstraZeneca, BMS-Pfizer, Roche, Servier for educational presentations (my own content) UNRELATED to this presentation.

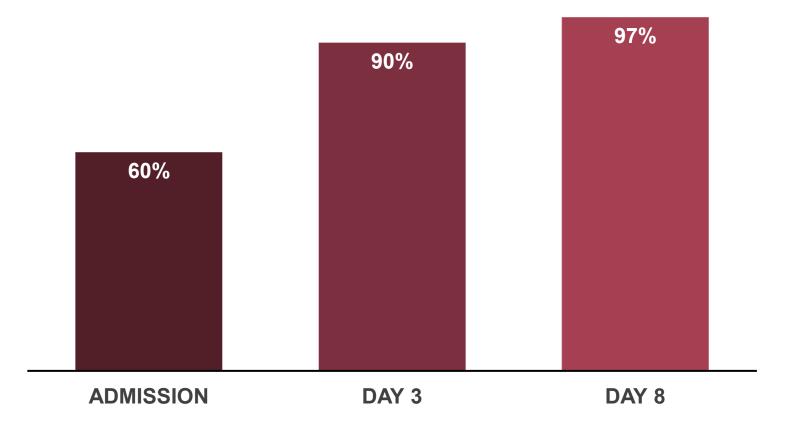
Objectives

After this presentation attendees will be able to:



Discuss laboratory testing as a modifiable cause of blood loss and anemia

Discuss the effect of switching to tubes that collect less blood for lab testing on RBC transfusion in ICU


Anemia is a common problem in hospital

Vincent et al. JAMA 2002. Corwin et al. Crit Care Med 2004. Thomas et al. Heart Lung 2010. Ania et al. J Am Geriatr Soc 1997.

Patients in ICU are at high risk for anemia

Proportion of patients with anemia during ICU admission

Vincent et al. JAMA 2002. Corwin et al. Crit Care Med 2004.

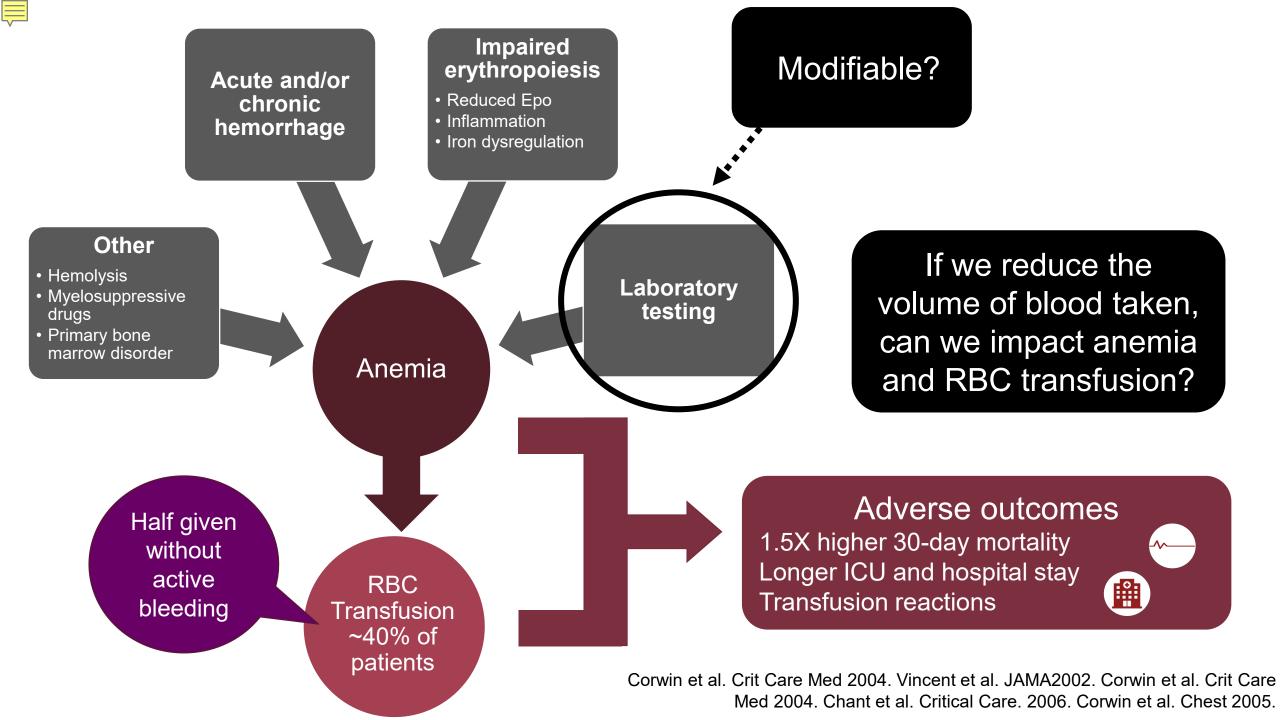
Ę

Anemia is associated with adverse outcomes

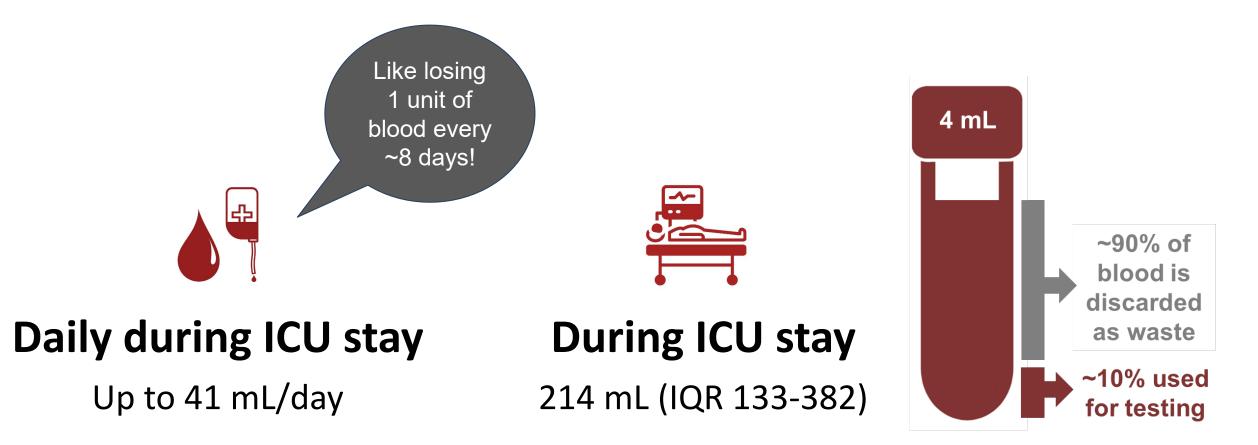
Higher 30-day mortality

Hb<80 g/L OR 1.49 (1.13-1.95) Hb80-90 g/L OR 1.54 (1.12-2.12)

Longer ICU stay


40% to 57%

Longer hospital stay


20% to 30%

Corwin et al. Crit Care Med 2004.

Ļ

Blood loss for lab testing is substantial

Chornenki, Siegal et al, Transfusion 2019. Vincent et al. JAMA 2002. Chant et al. Critical Care 2006. Salisbury et al. Arch Int Med 2011. Dale et al. Arch Pathol Lab Med 2003.

Proof of principle: blood loss reduces hematocrit

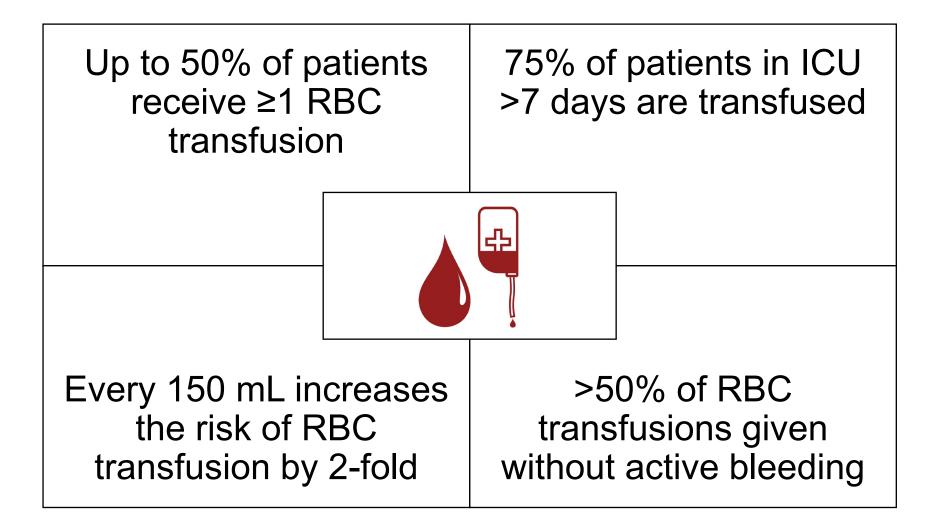
TABLE II Initial and final Hct values						
Subject	Hct _i (%)	Hct _f (%)	Observed (% points)	Predicted (% points)		
1	44.4	37.3	7.2	2.3		
2	46.6	45.0	1.6	3.1		
3	43.6	40.3	3.4	2.2		
4	47.0	39.3	7.8	3.3		
5	42.4	38.8	3.7	2.2		
6	45.0	42.0	3.0	2.2		
7	40.2	38.3	2.0	2.1		
8	44.0	38.3	5.8	2.4		
Mean	44.2	39.9*	4.3	2.5		
SD	2.2	2.5	2.3	0.5		

Cortinez et al. Can J Anesth 2004.

Ļ

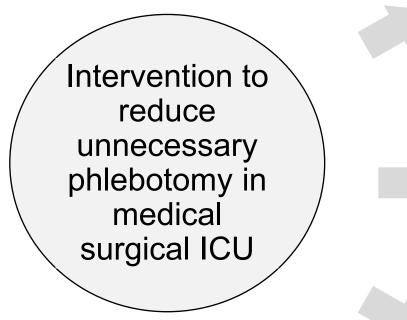
Diagnostic blood loss worsens anemia

Patients with MI


Every 50 mL increases risk of $Hb \le 110 \text{ g/L}$ by 15%

Hospitalized medical patients

Every 100 mL associated with ↓Hb of 7 g/L


Salisbury et al. Arch Intern Med 2011. Thavendiranathan et al. J Gen Intern Med 2005.

Anemia leads to frequent transfusion in ICU

Vincent et al. JAMA2002. Corwin et al. Crit Care Med 2004. Chant et al. Critical Care. 2006. Corwin et al. Chest 2005. Chornenki et al. Transfusion 2019.

Lower phlebotomy volume = fewer transfusions

Decreased phlebotomy volume (41 to 34 mL per patient day)

1.4 fewer blood tubes used per patient day

Fewer RBC transfusions (10 to 4 transfusions per 100 patient days)

RBC transfusion is associated with harms

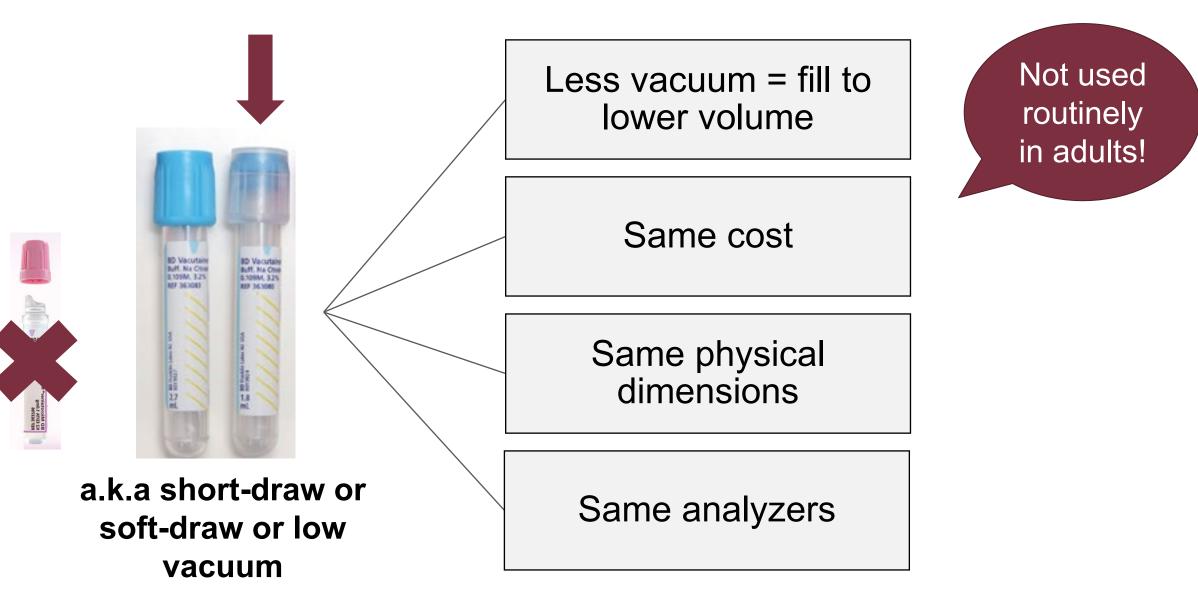
Resource Implications

Limited availability Direct cost ~\$500 per unit Indirect costs (testing, preparation, storage, administration, reactions)

Transfusion Harms

Reactions Volume overload Lung injury (TRALI) Infection Allosensitization Allergy

Adverse Clinical Outcomes


Death Longer admissions Infection Prolonged mechanical ventilation Organ dysfunction

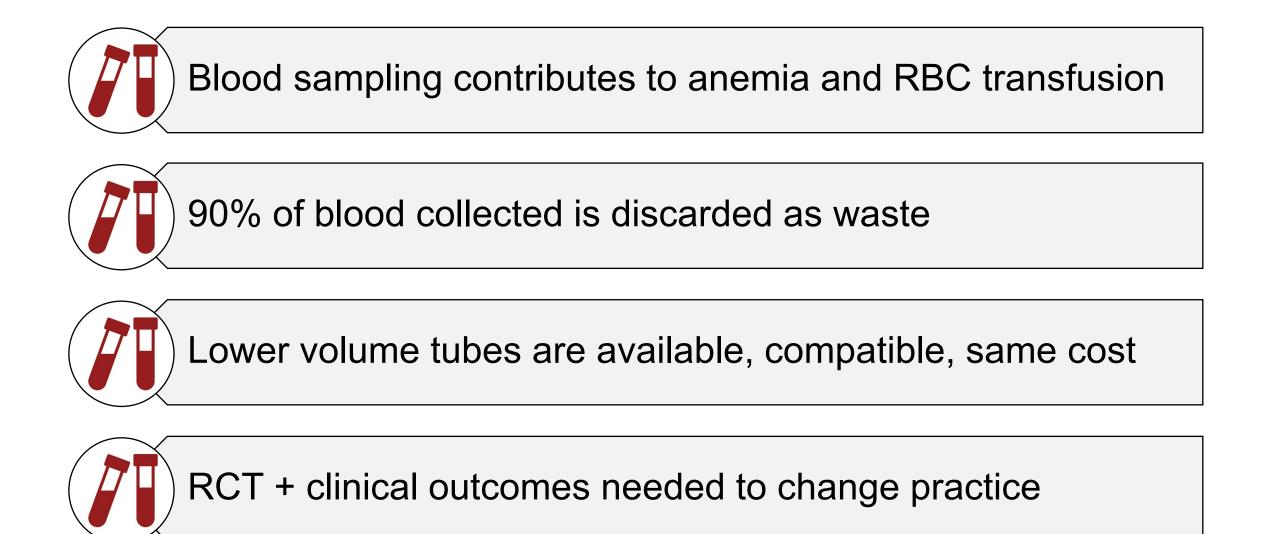
How much blood is actually used for testing?

Teet	Volur	4 mL		
Test	Minimum	Maximum	Average	2 mL (2000 uL)
Chemistry	2 uL	35 uL	5 – 15 uL	J serum or plasma
Immunoassays	10 uL	200 uL	25 – 50 uL	

Courtesy of Dr. S. Hill, Department of Pathology and Molecular Medicine, McMaster University

Tubes that automatically collect less blood

Why are lower volume tubes NOT used?


Evidence gap

- No randomized trials
- Benefits?
- Harms?

Barriers to implementation

- Concerns: problems for sampling, testing and results
- Laboratory processes (e.g. validation of tests)
- Lack of awareness and/or complacency

Rationale for a randomized trial

Explanatory vs. pragmatic trials

Can an intervention work under ideal conditions? Does an intervention work under usual conditions?

Highly selected population Rigid protocols Separate from usual care Special study teams Efficacy Internal validity

Explana

Broader population Complex interventions Usual care setting Clinical care team Effectiveness External validity

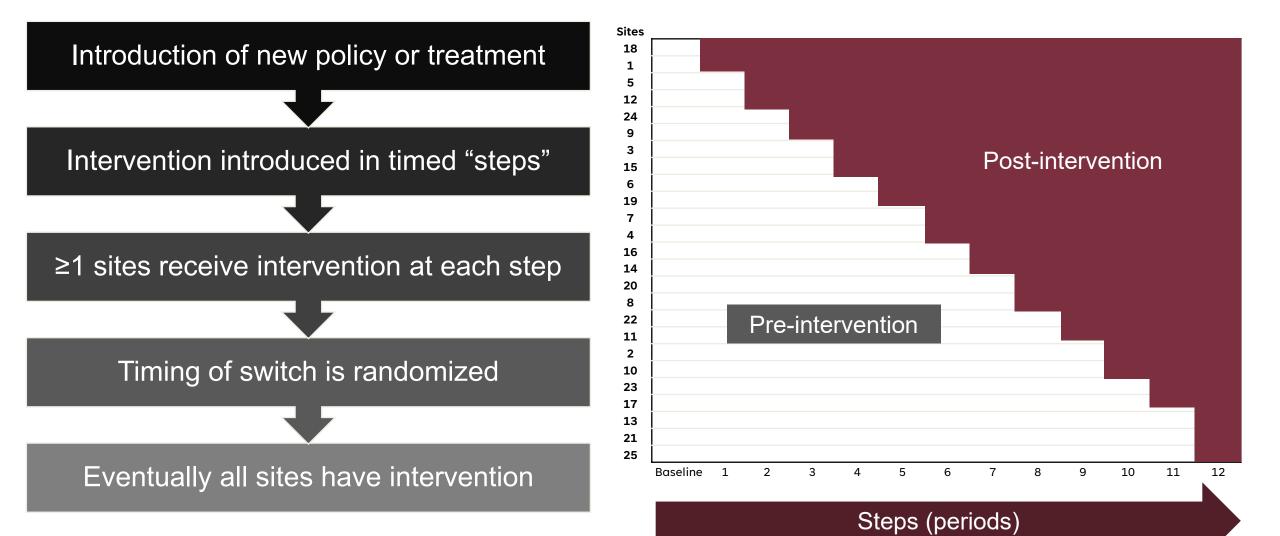
Examples of pragmatic trial designs

Parallel Cluster Trials

Cluster Cross-Over Trials

Stepped Wedge Trials

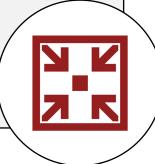
Examples of pragmatic trial designs


Registry Based Trials

Parallel Cluster Trials

Cluster Cross-Over Trials

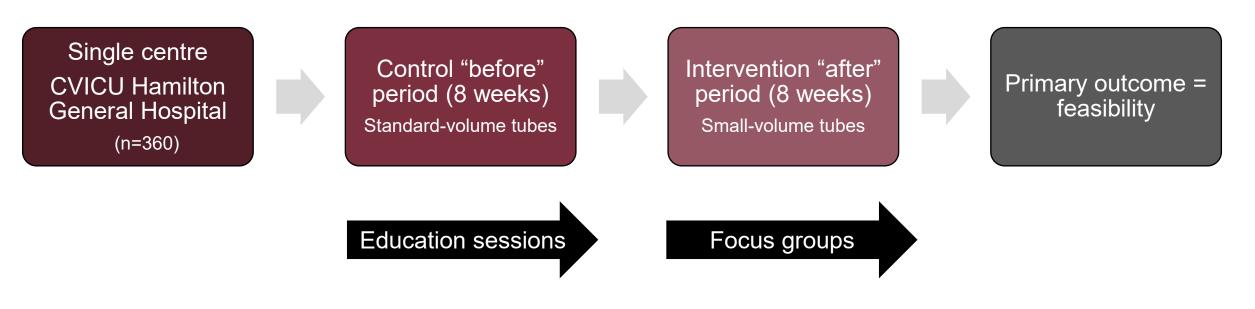
Stepped Wedge Trials


Stepped wedge cluster randomized trial

Effectiveness + implementation

- **TEST** effects of a clinical intervention on relevant outcomes
- **IMPLEMENT** a likely effective therapy in clinical practice

Dual focus

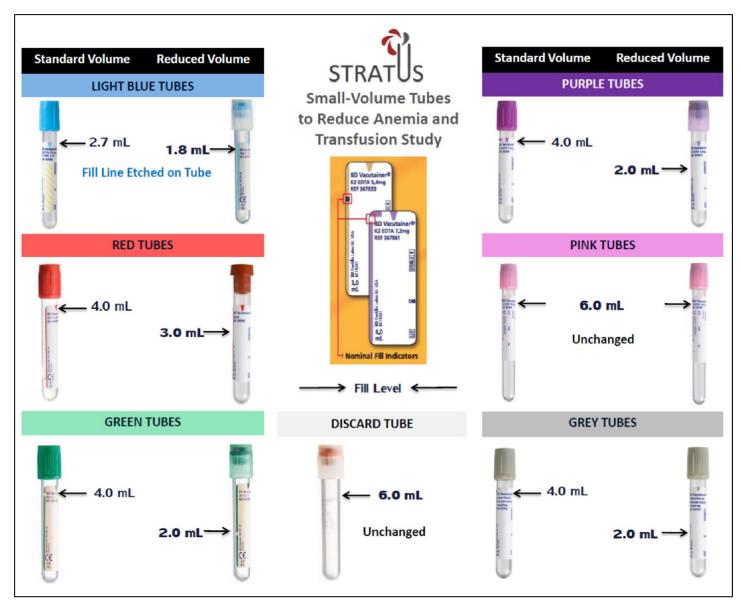


Randomized

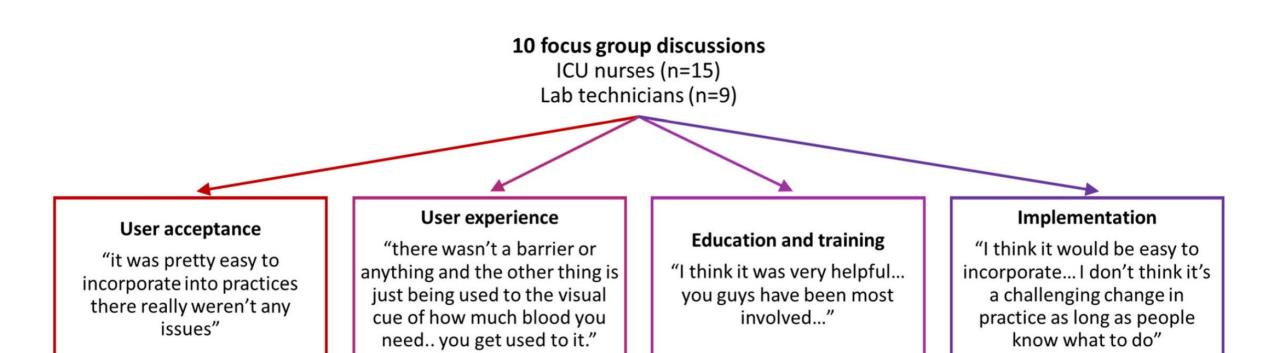
- Each cluster exposed to control and intervention
- Information for research and policy-makers
- Improved speed of translation into practice

Advantages

STRATUS mixed-methods pilot study



Primary outcome = feasibility


successful switch, adherence, insufficient samples, user acceptance, barriers/facilitators, data collection

Siegal et al. Can J Anaesth. 2023 Jul 28.

Example poster

Acceptable to end users

Summary of STRATUS Pilot Study results

Successfully implemented with 100% adherence

Acceptable to end-users

No increased insufficient samples

45% reduction in blood collected

) Full-scale trial feasible

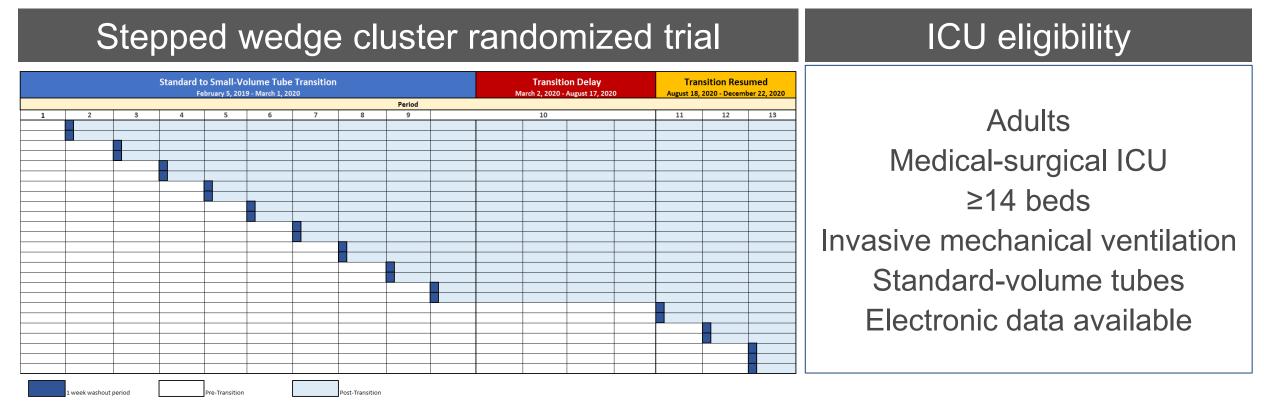
Siegal et al. Can J Anaesth. 2023 Jul 28.

Small-Volume Tubes to Reduce Anemia and Transfusion (STRATUS) Trial

Deborah M. Siegal on behalf of the STRATUS Trial Investigators

Siegal et al. JAMA. Published online October 12, 2023. doi:10.1001/jama.2023.20820

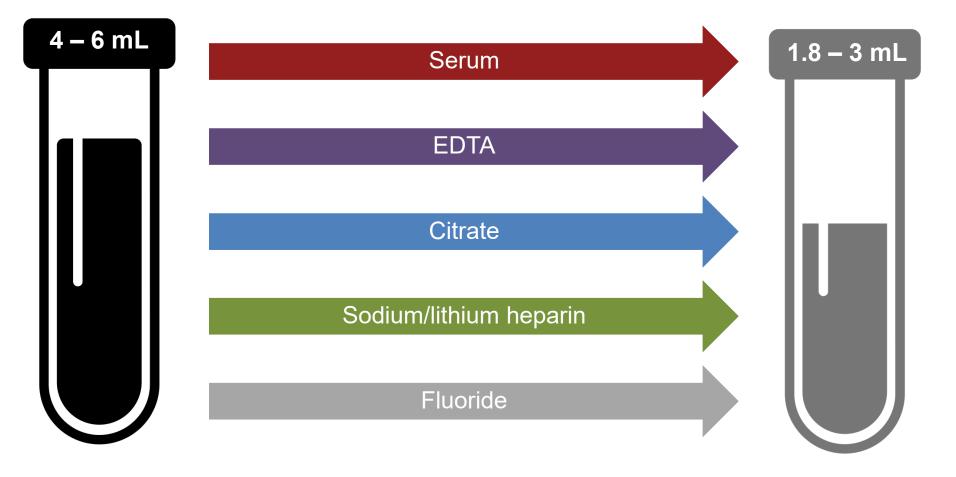
STRATUS



Transition to small-volume blood collection tubes will reduce RBC transfusion in ICU patients

Study design and population

All patients admitted to ICU during study period Waiver of individual participant consent


Electronic data (administrative, transfusion, lab) up to 30 days, hospital discharge, or death

Intervention: transition to small-volume tubes

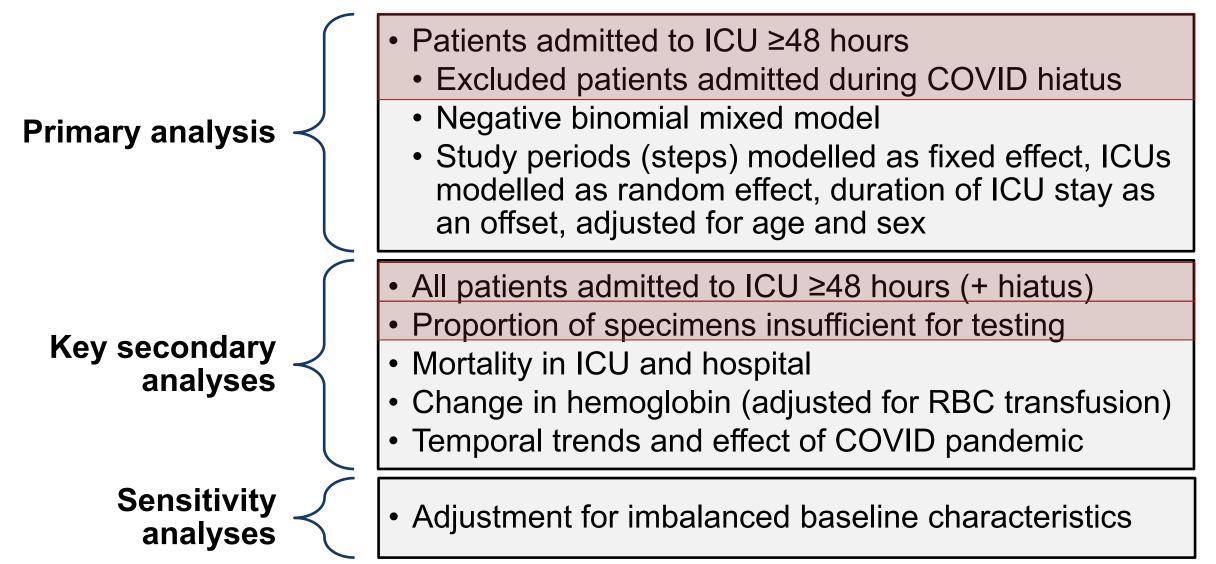
Standard-volume

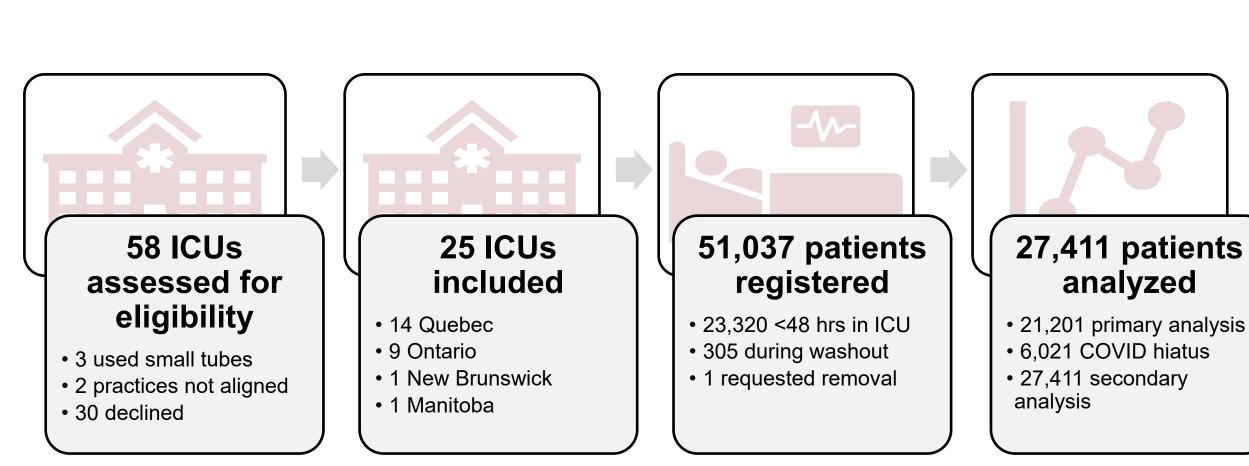
Ē

Small-volume

Primary Outcome

RBC units transfused per patient during ICU admission




Key Secondary Outcomes

Proportion of insufficient specimens
Proportion of patients who received RBC transfusion
∆Hb from admission to discharge (adjusted for RBC)
ICU and hospital length
Mortality in ICU and hospital

Analysis

Results

Ę

Selected baseline characteristics

Ē

	Primary ana	lysis population	Secondary analysis population			
Characteristic	Small-volume (n=10,261)	Standard-volume (n=10,940)	Small-volume (n=12,703)	Standard-volume (n=14,708)		
Age, y, mean (SD)	63 (16)	63 (16)	63 (16)	63 (16)		
Female, n (%)	4090 (40)	4178 (38)	4832 (38)	5804 (40)		
Diagnosis (ICD codes)						
Cardiovascular	2245 (25)	1762 (21)	1813 (19) ^	3329 (25) ^		
Nervous system	1156 (13)	1155 (14)	1365 (14)	1586 (12)		
Respiratory	1047 (12)	881 (10)	996 (10)	1461 (11)		
Injury	965 (11)^	1577 (18)^	1932 (20) ^	1363 (10)^		
Infection	807 (9)	676 (8)	743 (8)	1134 (9)		
Cancer	779 (9)	801 (9)	890 (9)	1152 (9)		
Digestive	787 (9)	728 (8)	814 (8)	1106 (8)		
Genitourinary	216 (2)	191 (2)	209 (2)	299 (2)		
Endocrine	113 (1)	239 (2)	113 (1)	239 (2)		
Other	912 (10)	641 (8)	784 (8)^	1469 (11)^		

RBC units per patient per ICU stay

30% of patients admitted ≥48 hours received RBC transfusion

RBC units	Primary analysis population (COVID hiatus excluded n=21,201)						
per pt per ICU stay	Small Standard Volume Volume		Mean Difference (95% CI)	Р			
Least squares mean (95% CI)	0.72 (0.52, 0.98)	0.79 (0.58, 1.07)	-0.07 (-0.19, 0.03)	0.19			
	Absolute mean difference 7.24 RBC units/100 patients (95%CI -3.28, 19.44)						

Mean difference results were adjusted for age and sex and accounted for the stepped wedge design with periods modelled as fixed effects and ICUs as a random effect.

RBC units per patient per ICU stay

30% of patients admitted ≥48 hours received RBC transfusion

RBC units per pt per ICU stay	Primary analysis population (COVID hiatus excluded n=21,201)				Secondary analysis population (all patients n=27,411)			
	Small Volume	Standard Volume	Mean Difference (95% CI)	P	Small Volume	Standard Volume	Mean Difference (95% CI)	Р
Least squares mean (95% CI)	0.72 (0.52, 0.98)	0.79 (0.58, 1.07)	-0.07 (-0.19, 0.03)	0.19	0.71 (0.53, 0.93)	0.80 (0.61, 1.06)	-0.10 (-0.21, -0.002)	0.04
	Absolute mean difference 7.24 RBC units/100 patients (95%CI -3.28, 19.44)			Absolute mean difference 9.84 RBC units/100 patients (95%CI 0.24, 20.76)				

Mean difference results were adjusted for age and sex and accounted for the stepped wedge design with periods modelled as fixed effects and ICUs as a random effect.

Specimens with insufficient quantity

EDTA, sodium/lithium heparin tubes

Ę

Specimens with	Primary analys (COVID hiatu		Secondary analysis population (all patients)		
insufficient quantity for testing	Small Volume (n=193,695)	Standard Volume (n=195,383)	Small Volume (n=285,273)	Standard Volume (n=224,868)	
N (%)	42 (0.022)	60 (0.031)	65 (0.023)	64 (0.028)	

Change in hemoglobin

From ICU admission to ICU discharge

Ę

Outcome	Primary a (COVID hiat	analysis pop us excluded		Secondary analysis population (all patients n=27,411)			
	Small Volume	Standard Volume	Mean difference (95% CI)	Small Volume	Standard Volume	Mean difference (95% CI)	
∆Hb adjusted for RBC transfusions, g/L, median (IQR)	-14.0 (-30.0, -2.0)	-15.0 (-32.0, -4.0)	1.0 (-0.4, 2.3)	-14.0 (-31.0, - 03.0)	-15.0 (-32.0, -4.0)	1.7 (0.5, 2.9)	
∆Hb, g/L, median (IQR)	-8.0 (-19.0, 2.0)	-9.0 (-21.0, 1.0)	1.0 (0.2, 1.8)	-8.0 (-20.0, 2.2)	-9.0 (-21.0, 1.0)	1.2 (0.5, 1.9)	
∆Hb in patients without RBC transfusions, g/L, median (IQR)	-8.0 (-19.0, 1.0)	-10.0 (-21.0, 0.0)	1.0 (0.1, 1.9)	-9.0 (-20.0, 0.0)	-10.0 (-21.0, 0.0)	1.0 (0.2, 1.8)	

Analyses were adjusted for baseline admission hemoglobin. Mean difference was adjusted for age and sex and accounted for stepped wedge design with periods modelled as fixed effects and ICUs as random effect. Hemoglobin adjusted for RBC transfusion 1 transfusion = Hb – 1 g/dL.

Conclusions

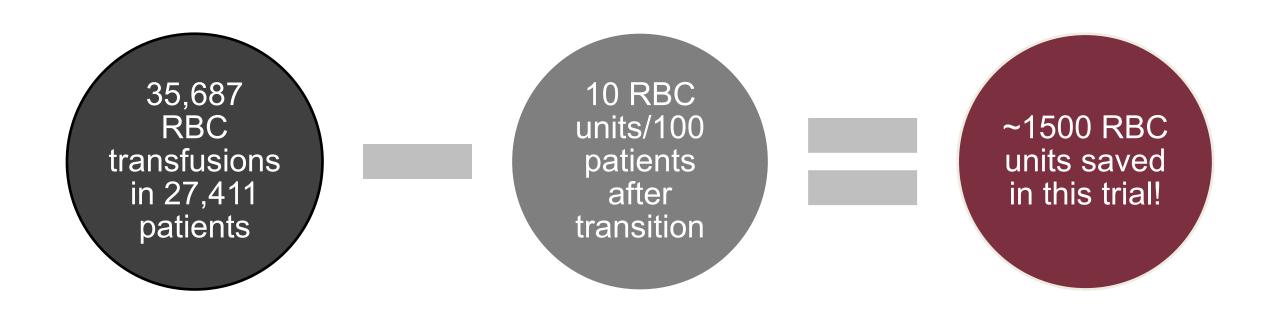
Transition from standard- to small-volume tubes in ICU May reduce RBC transfusion in patients admitted ≥ 48 hrs
No difference primary analysis (6210 patients excluded)
Decrease of ~10 RBC units per 100 patients in secondary analysis

Lessens ICU-related reduction in hemoglobin

Does not negatively impact lab testing (specimen sufficiency)

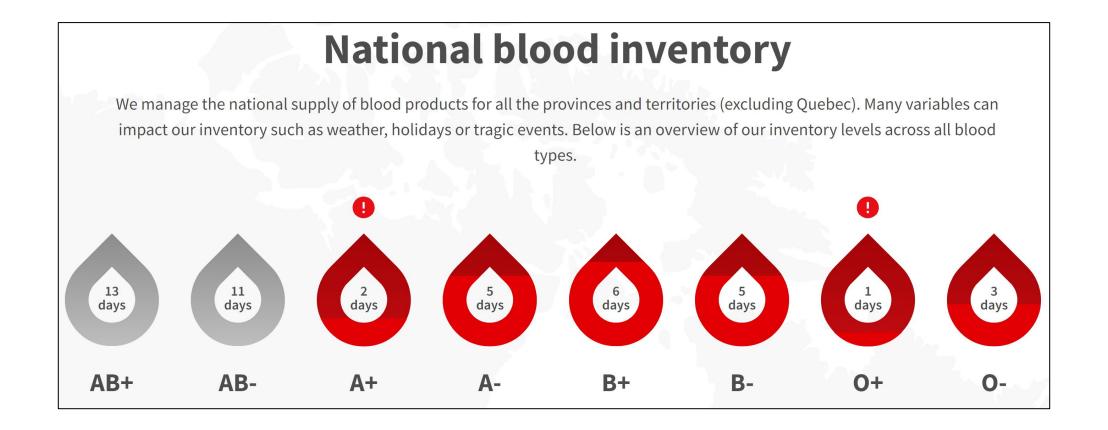
Discussion

- Implemented easily into routine practice with brief targeted education (scalable)
- Pragmatic data collection (cost effective)
- Community and academic sites
- Small effect at individual level but potential for impact at health system level


Strengths

- Changes in study conduct and primary analysis due to COVID
- Limited availability on baseline characteristics and co-interventions
- Transfusion and waste practices
 not protocolized
- One aspect of lab testing (deemed most important)

Limitations


Small change, big difference

Blood product shortage: Canada

https://www.blood.ca/en

Ę

Acknowledgements

Study Team

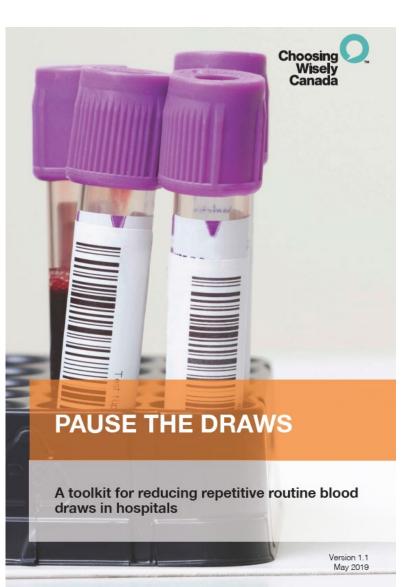
Dr. Emilie Belley-Côté Dr. Stephen Hill Dr. Shun Fu Lee Dr. Stuart Connolly Tanya Kovalova Emily Di Sante Gladys Marfo

Steering Committee

Dr. Emilie Belley-Côté Dr. Stephen Hill Dr. Shun Fu Lee Dr. Mark Crowther Dr. Donnie Arnold Dr. Bram Rochwerg Dr. Frederikc D'Aragon Dr. Ryan Zarychanski Dr. Stuart Connolly

Site Leads

Dr. E. Belley-Coté, Dr. F. D'Aragon, Dr. R. Zarychanski, Dr. B. Rochwerg, Dr. M. Chassé, Dr. A. Binnie, Dr. K. Honarmand, Dr. F. Lauzier, Dr. I. Ball, Dr. W. Al-Hazzani, Dr. P. Archambault, Dr. E. Duan, Dr. K. Khwaja, Dr. F. Lellouche, Dr. P. Lysecki, Dr. J. F. Naud, Dr. J. Shahin, Dr. J. Shea, Dr. H. T. Wang


Funding

'ICU vampirism' – time for judicious blood draws in critically ill patients Journal of Thrombosis and Haemostasis, 12: 1591

Ranasinghe BJH 2013 doi:10.1111/bjh.12613

FORUM

latrogenic anemia (can it be prevented?)

M. STEFANINI Department of Medicine, Clinch Valley Medical Center, Richlands, VA, USA

Routine Blood Testing Adds Up

IN ONE DAY: The average GIM patient has 7 millilitres of blood collected for routine blood tests such as CBC and biochemistry. IN ONE MONTH: That adds up to 50 units of blood collected across the service.

IN ONE YEAR: GIM collects the equivalent of **36 human blood volumes** for routine testing alone.

Key messages

Anemia is a common complication during hospitalization (especially ICU admission) that leads to RBC transfusion

Laboratory testing is a *modifiable* cause of blood loss that contributes to anemia and RBC transfusion

Switching to tubes that collect less blood for lab testing may reduce RBC transfusion and reduce anemia in ICU

QUESTIONS?

dsiegal@toh.ca

