Albumin: Understanding the Controversy Dr. Justyna Bartoszko, MD MSc FRCPC Toronto General Hospital – University Health Network University of Toronto September 22, 2023 ## **Disclosures** ### Have received awards or honoraria from: - University of Toronto Department of Anesthesia and Pain Management - Society for the Advancement for Blood Management - CIHR - Grifols - Octapharma # Learning objectives - To understand the physiological role of endogenous albumin - To understand the physiological effects of exogenous albumin - To clarify the formulations of albumin available in Canada and their differences - To provide an overview of albumin's popularity in Canada and motivations for its use - To review the indications supported by evidence for exogenous albumin administration - To discuss several "real-world" applications of albumin # **Learning objective 1:** Understand the physiological role of endogenous albumin ### What is albumin? ### Most common plasma protein - Water-soluble, globular, negatively charged - 40% intravascular, 60% interstital - Synthesized in the liver at a rate of 10-15 g / day - Catabolized by endothelium with daily turnover 9-12 g - Degradation in muscle, skin, liver, other organs - Median half life 18 days - Approx ½ of total plasma protein content - Albumin normal value 40 g/L vs. Total Serum Protein 70 g/L ## What does albumin do? - Provides 80% of total plasma oncotic pressure - Extravascular oncotic pressure - Carrier - Binds endogenous ligands - Bilirubin, fatty acids, metals, ions, hormones - Binds exogenous substances - Drugs ## What do albumin levels reflect? - Liver synthetic function - Nutritional Status - Malabsorpotion, malnutrition - Losses (burns) - Renal disease - Reduced synthesis, increased degradation, increased losses Hypoalbuminemia is common with many types of systemic diseases # Learning objective 2 and 3: Understand the physiological effects of exogenous albumin Clarify the formulations of albumin available in Canada and their differences # ENDOgenous vs. EXOgenous Albumin - Can be used as an exogenous colloid solution - Blood product for which consent is required - Supplied by Canadian Blood Services - Protein purified from donated human plasma - Sterile, latex free, virally inactivated solution, physiological pH (6.4-7.4), Na = 130-160 mmol/L Due to legislation prohibiting payment and a lack of a fractionation company in Canada, most albumin in Canada from paid U.S. plasma donors # Albumin as a Drug - **100 ml of 25%** (25 g) OR **250 ml of 5%** (12.5 g) - 25% used for oncotic deficit (hyperoncotic) - 5% used for therapeutic plasmapheresis or volume deficit alone (isoosmotic) - Widely used largely off-label since the 1940's - Canadian Brand Names: - **Albumin®** - Alburex ® # Typical Dosage ### Note difference between 5% and 25% Albumin - 500 ml of 5% albumin = 25 g of albumin = 500 mL increase in intravascular volume - 100 ml of 25% albumin = 25 g of albumin = 450 mL increase in intravascular volume (350 mL from interstitial pool) ### Adverse reactions: - Rare anaphylaxis - Circulatory overload particularly if 25% administered instead of 5% - Transient hypotension (rare case reports in patients on ACE Inhs) - No known transmission of viral pathogens (HIV, HCV, etc) ### Slide courtesy of Dr. J Callum ## What are the alternatives to albumin? Crystalloids Other Blood Products # **Learning objective 4:** Provide an overview of albumin's popularity in Canada and motivations for its use # Why use albumin to begin with? - Optimal resuscitation is difficult in ill patients - Fluid overload has detrimental effects - Venous congestion is associated with organ edema and dysfunction - Leads to a higher "afterload" for the kidneys, associated with AKI and RRT - Associated with impaired hepatic function, intra-abdominal hypertension - Associated with skin and soft tissue infection and pressure injuries, longer mechanical ventilation, increased hospital and ICU length of stay - Associated with higher hospital and ICU mortality # Motivations for Albumin Use Fluid Balance is tricky and important in very ill patients # **Learning objective 5:** Review the current indications supported by evidence for exogenous albumin administration # Recognized Indications - CBS Albumin Educational Materials | 25% Albumin | 5% Albumin | |--|---| | Liver disease and bacterial peritonitis | Therapeutic plasma exchange | | Large Volume (>5 L) paracentesis in Cirrhotic Patients | Thermal Injury Involving > 50% TBSA, if unresponsive to crystalloid | | Hepatorenal Syndrome Type 1 | | ### Adult Indications with Supporting (Perhaps Low Quality) Evidence #### LIVER PATIENTS - Spontaneous bacterial peritonitis 25% albumin 1.5 g/kg within 6 hours of diagnosis, then 1 g/kg on day 3 - <u>Large volume paracentesis</u> 25% albumin, 6-8 g for every litre removed, administer soon after procedure to avoid procedural complications (hypovolemia, hyponatremia, renal impairment) - Acute Onset HRS Type 1 If eligible for liver transplant, 25% Albumin 1 g/kg on Day 1, 100-200 ml on days 2-14 #### **CRITICAL ILLNESS** - ARDS NOT suggested for volume replacement alone or in combination with diuretics (very low quality evidence) - <u>Hypovolemia</u> NOT suggested for volume replacement or to increase serum albumin levels (moderate quality evidence) #### **SPECIAL POPULATIONS** - OHSS 25% albumin, 50-100 g over 4 hours, q4-12 h prn - Plasma exchange 5 % albumin, titrated to plasma volume removed - <u>Burns > 50% TBSA</u> low quality evidence, not recommended. Historically used when unresponsive to crystalloid, 5% albumin at 0.3-0.5 ml/kg/BSA (50-100 mL/hour) # **Learning objective 6:** Discuss several "real world" applications of albumin ### Patients with Liver Disease - Spontaneous bacterial peritonitis 25% albumin 1.5 g/kg within 6 hours of diagnosis, then 1 g/kg on day 3 - <u>Large volume paracentesis</u> 25% albumin, 6-8 g for every litre removed, administer soon after procedure to avoid procedural complications (hypovolemia, hyponatremia, renal impairment) - Acute Onset HRS Type 1 If eligible for liver transplant, 25% Albumin 1 g/kg on Day 1, 100-200 ml on days 2-14 # Liver Patients State of the Evidence: Update on Recent RCTs # March 2021 NEJM – Albumin Infusions for Patients with Decompensated Cirrhosis - Patients with decompensated cirrhosis are often given albumin for established indications (HRS Type 1, SBP, large volume paracentesis) - The benefits of routine infusion are uncertain - Preclinical studies support the routine use of albumin for its anti-inflammatory role, among other reasons - Albumin < 30 g/L in cirrhosis is predictive of immune dysfunction # Liver Patients State of the Evidence: Update In hospitalized patients with decompensated cirrhosis, does targeting an albumin level of ≥30 g/L with repeated daily infusions of 20% human albumin solution reduce incidence of infection, kidney dysfunction and death? Slides courtesy of Dr. Yulia Lin # ATTIRE - Multicenter RCT open Mostly alcohol-related with mean alb 23+/- 4 g/L Excluded: advanced HCC, palliatve care Target albumin > 35 g/L 777 pts hospitalized decompensated cirrhosis + albumin < 30g/L in 1st 72h Daily 20% albumin to 14d Standard Care | Composite: new infection, kidney dysfnc or death in 3 to 15 d post initiation | 29.7% | 30.2% | P=0.87 | |---|-----------------|--------------|--------| | Albumin infusion (median, IQR) | 200 g (140-280) | 20 g (0-120) | | China et al. NEJM Mar 2021;384:808-17 ### Slides courtesy of Dr. Yulia Lin | Table 2. End Points.* | | | | | | | |--|--------------------------|----------------------------------|----------------------------------|---------|--|--| | Variable | Albumin Group
(N=380) | Standard-Care Group
(N = 397) | Adjusted Odds Ratio
(95% CI)† | P Value | | | | Composite primary end point — no. (%) | 113 (29.7) | 120 (30.2) | 0.98 (0.71-1.33) | 0.87 | | | | Components of composite primary end point — no. (%); | | | | | | | | Incidence of new infection | 79 (20.8) | 71 (17.9) | 1.22 (0.85-1.75) | | | | | Incidence of kidney dysfunction | 40 (10.5) | 57 (14.4) | 0.68 (0.44-1.11) | | | | | Incidence of death | 30 (7.9) | 33 (8.3) | 0.95 (0.56-1.59) | | | | | Death at 28 days | 53 (14.0) | 62 (15.6) | 0.86 (0.57-1.30) | | | | | Death at 3 mo | 92 (24.2) | 93 (23.4) | 1.05 (0.74-1.48) | | | | | Death at 6 mo | 132 (34.7) | 119 (30.0) | 1.27 (0.93-1.73) | | | | | Total median albumin infused per patient (IQR) — g | 200 (140–280) | 20 (0–120) | 143 (127–158)§ | | | | ^{*} Unless stated, the time of the end point is during the trial treatment period (15 days after randomization). China et al. NEJM Mar 2021;384:808-17 [†] Odds ratios are adjusted for stratification variables, with sites as random intercept terms. $[\]ddagger$ The end points are defined in the original trial protocol. 26 [§] This is the adjusted mean difference between the groups. | Event | Albumin Group
(N=380) | Standard-Care Group
(N = 397) | All Patients
(N = 777) | |---|--------------------------|----------------------------------|---------------------------| | | | number of events | | | Serious adverse event | | | | | Grade 3: severe event | 28 | 11 | 39 | | Grade 4: life-threatening event | 17 | 13 | 30 | | Grade 5: death | 42 | 48 | 90 | | All events | 87 | 72 | 159 | | Individual serious adverse events occurring in >1 patient† | | | | | Anemia | 1 | 1 | 2 | | Esophageal varices hemorrhage | 5 | 6 | 11 | | Gastric hemorrhage | 5 | 4 | 9 | | Multiorgan failure | 23 | 31 | 54 | | Other infections and infestations: spontaneous bacterial peritonitis | 0 | 5 | 5 | | Lung infection | 15 | 8 | 23 | | Sepsis | 4 | 3 | 7 | | Encephalopathy | 4 | 1 | 5 | | Acute kidney injury | 2 | 0 | 2 | | Adult respiratory distress syndrome | 0 | 2 | 2 | | Нурохіа | 1 | 1 | 2 | | Pleural effusion | 1 | 1 | 2 | | Pulmonary edema | 15 | 4 | 19 | | All serious adverse events that included pulmonary edema
or gastrointestinal bleeding: | | | | | Any pulmonary edema or fluid overload | 23 | 8 | 31 | | Any gastrointestinal bleeding | 11 | 13 | 24 | ^{*} Patients may have had more than one clinical diagnosis per serious adverse event. A serious adverse event was any new adverse event that was a life-threatening event or resulted in prolongation of an existing hospitalization. ### Slides courtesy of Dr. Yulia Lin We conclude that targeted albumin therapy had no clinically important effect on preventing infections or reducing the development of kidney dysfunction in hospitalized patients with decompensated cirrhosis. This finding contrasts with those in our laboratory studies,³⁶ and this difference underscores the importance of appropriately powered confirmatory clinical trials. The infusion of greater quantities of albumin probably would have been unsafe and would have led to more severe or life-threatening serious adverse events in the albumin group. China et al. NEJM Mar 2021;384:808-17 [†] Serious adverse events are categorized with a single primary event name (graded by two assessors) according to the Common Terminology Criteria for Adverse Events, version 5.0 (2017). [‡] Serious adverse events were labeled by the investigators as involving a primary event but could have involved other contributing events. ### Slide courtesy of Dr. J Callum # Long-term albumin administration in decompensated cirrhosis (ANSWER): an open-label randomised trial - n=440 - Patients with cirrhosis on >200 mg spironolactone and 25 mg of furosemide - RCT: albumin (40g 2x/wk then weekly for 18 months) vs. nothing Figure 3: Overall survival Kaplan-Meier estimates for the probability of overall survival in the modified intention-to-treat population of SMT and SMT plus HA groups. The p value was calculated by the log-rank test. HA=human albumin. SMT=standard medical treatment. ## **Non-Indications** ### Currently, NO EVIDENCE to support albumin use in: - (1) Cardiac Surgery - (2) Volume Resuscitation for hypovolemia - (3) Cerebral Ischemia / hypovolemic brain injury - (4) Hypoalbuminema - (5) Hypotension during dialysis therapy # Cardiac Surgery Dr. Selene Martinez, Anesthesiologist, Toronto General Hospital ### JAMA | Original Investigation # Effect of 4% Albumin Solution vs Ringer Acetate on Major Adverse Events in Patients Undergoing Cardiac Surgery With Cardiopulmonary Bypass A Randomized Clinical Trial Eero Pesonen, MD, PhD; Hanna Vlasov, MD; Raili Suojaranta, MD, PhD; Seppo Hiippala, MD, PhD; Alexey Schramko, MD, PhD; Erika Wilkman, MD, PhD; Tiina Eränen, MScPharm; Kaapo Arvonen, MD; Maxim Mazanikov, MD, PhD; Ulla-Stina Salminen, MD, PhD; Mihkel Meinberg, MD; Tommi Vähäsilta, MD, PhD; Liisa Petäjä, MD, PhD; Peter Raivio, MD, PhD; Tatu Juvonen, MD, PhD; Ville Pettilä, MD, PhD **IMPORTANCE** In cardiac surgery, albumin solution may maintain hemodynamics better than crystalloids and reduce the decrease in platelet count and excessive fluid balance, but randomized trials are needed to compare the effectiveness of these approaches in reducing surgical complications. **OBJECTIVE** To assess whether 4% albumin solution compared with Ringer acetate as cardiopulmonary bypass prime and perioperative intravenous volume replacement solution reduces the incidence of major perioperative and postoperative complications in patients undergoing cardiac surgery. - Visual Abstract - Editorial page 246 - Supplemental content | | No. (%) of patients | | | | | | | |----------------------|---------------------|---------------------|------------------------|---------------------------|-------------------|------------------|---------| | | Albumin
(n=693) | Ringer
(n = 693) | Difference (95% CI), % | Relative risk
(95% CI) | Favors
albumin | Favors
Ringer | P value | | Major adverse events | 257 (37.1) | 234 (33.8) | 3.3 (-1.7 to 8.4) | 1.10 (0.95 to 1.27) | _ | - | .20 | | Arrhythmia | 91 (13.1) | 86 (12.4) | 0.7 (-2.8 to 4.2) | 1.06 (0.80 to 1.39) | | - | .69 | | Infection | 90 (13.0) | 62 (8.9) | 4.0 (0.8 to 7.3) | 1.45 (1.07 to 1.97) | | _ | .02 | | Resternotomy | 74 (10.7) | 40 (5.8) | 4.9 (2.0 to 7.8) | 1.85 (1.28 to 2.68) | | | .001 | | Myocardial injury | 27 (3.9) | 62 (8.9) | -5.1 (-7.6 to -2.5) | 0.44 (0.28 to 0.68) | | | <.001 | | Bleeding | 52 (7.5) | 30 (4.3) | 3.2 (0.7 to 5.7) | 1.73 (1.12 to 2.68) | | | .01 | | Acute kidney injury | 23 (3.3) | 18 (2.6) | 0.7 (-1.1 to 2.5) | 1.28 (0.70 to 2.35) | | | .43 | | Heart failure | 18 (2.6) | 23 (3.3) | -0.7 (-2.5 to 1.1) | 0.78 (0.43 to 1.44) | | | .43 | | Stroke | 19 (2.7) | 19 (2.7) | 0.0 (-1.7 to 1.7) | 1.00 (0.53 to 1.87) | | | >.99 | | Death | 2 (0.3) | 4 (0.6) | -0.3 (-1.0 to 0.4) | 0.50 (0.09 to 2.72) | ← | | .42 | | | | | | | | T | | | | | | | .! | 0.2 | Ĺ | 4 | Relative risk (95% CI) # Non-cardiac ICU Patients Photo by Victor J. Blue, New York Times # Surviving Sepsis Campaign - Fluid Management #### F. FLUID THERAPY - 1. We recommend that a fluid challenge technique be applied where fluid administration is continued as long as hemodynamic factors continue to improve (BPS). - 2. We recommend crystalloids as the fluid of choice for initial resuscitation and subsequent intravascular volume replacement in patients with sepsis and septic shock (strong recommendation, moderate quality of evidence). - 3. We suggest using either balanced crystalloids or saline for fluid resuscitation of patients with sepsis or septic shock (weak recommendation, low quality of evidence). - 4. We suggest using albumin in addition to crystalloids for initial resuscitation and subsequent intravascular volume replacement in patients with sepsis and septic shock when patients require substantial amounts of crystalloids (weak recommendation, low quality of evidence). - 5. We recommend against using hydroxyethyl starches (HESs) for intravascular volume replacement in patients with sepsis or septic shock (strong recommendation, high quality of evidence). - 6. We suggest using crystalloids over gelatins when resuscitating patients with sepsis or septic shock (weak recommendation, low quality of evidence). # De-emphasizing Albumin - Fluid Management ### Managing resuscitation: - Fluids: For patients with sepsis-induced hypoperfusion, provide 30 mL/kg of intravenous crystalloid within 3 hours (strong recommendation; low QOE) with additional fluid based on frequent reassessment (BPS), preferentially using dynamic variables to assess fluid responsiveness (weak recommendation; low QOE). - Resuscitation targets: For patients with septic shock requiring vasopressors, target a mean arterial pressure (MAP) of 65 mm Hg (strong recommendation; moderate QOE). - Vasopressors: Use norepinephrine as a first-choice vasopressor (strong recommendation; moderate QOE). # Intermittent Hemodialysis & Hypotension #### Macedo et al. Critical Care Medicine 2021 - 65 AKI or ESRD hospitalized patients with serum albumin < 30 g/L - Randomized to receive 100 mL of NS or 25% albumin prior to hemodialysis - Solutions alternated for up to 6 dialysis sessions - Overall data collected from 249 sessions and 65 patients - Co-Primary outcome: Incidence of Cardiovascular and Hemodynamic events, including Intradialytic hypotension (Safety) and Delivered Fluid Removal (ml/kg/hr) ## Macedo et al. 2021 **Fig. 2** Frequency of complication associated with intradialytic hypotension in albumin and 0.9% sodium chloride sessions. Data are *n* (%), or mean (SD). *SBP* systolic blood pressure, *UF* ultrafiltration, *NS* normal saline (0.9% sodium chloride). *p* values are based on GEE analysis ## Limitations - Small number of patients - Single Centre - Limited generalizability (only hospitalized inpatients known to hypoalbuminemic) - Potential confounding (RNs not blinded to intervention) # ALbumin To Enhance Recovery from severe Acute Kidney Injury (ALTER-AKI) Principal Investigator(s): **Edward Clark** Status: In Development ## How much albumin do we use now? # Key Learnings and take aways - Albumin has a long history of use in Canada and globally - It is a blood product derived from human plasma - Although generally safe, inherent risks with transfusion - Albumin use should always be carried out with a specific indication in mind - Avoid indiscriminate use in general ICU, surgical or medical inpatients - No major evidence of benefit over alternatives (balanced crystalloids) - Significantly more costly than alternatives (balanced crystalloids) # Thank you.