Patient Blood Management

The Intraoperative Period

Keyvan Karkouti

Head, Department of Anesthesia and Pain Management University Health Network, Sinai Health System, Women's College Hospital Senior Scientist, Toronto General Hospital Research Institute

The 3 Pillars of PBM – Intraoperative

Optimize erythropoiesis

□ Schedule surgery with red cell mass in consideration

Intravenous iron for acute alteration of risk

Will not discuss at this lecture

The 3 Pillars of PBM – Intraoperative

Minimize blood loss

- Anesthetic blood sparing techniques
- Acute normovolemic hemodilution
- Cell salvage
- Pharmacological therapies (Tranexamic acid)
- POC-based coagulation management algorithms

The 3 Pillars of PBM – Intraoperative

Manage anemia

- □ Improve tolerance of anemia
- Evidence-based transfusion thresholds

Practical criteria for adoption of modalities

- 1. Has to be effective
- 2. Has to be at least as safe as transfusion
- 3. Costs should be reasonable

Anesthetic blood sparing techniques

Permissive hypotension

- □ Lowering of blood pressure to mean ~ 50–60 mmHg
- □ Objectives:
 - Reducing blood loss
 - Improving visibility in surgical field
- □ Techniques:
 - Anesthetic depth, vasodilators, beta-blockers, fluid restriction
- □ Risks:
 - Organ hypoperfusion and injury

Anesthetic blood sparing techniques

Permissive hypotension

- **Evidence**:
 - Supported by meta-analysis
 - Specific types of surgeries: Sinus, Orthopedics, Spine, Liver, Prostate
 - Based on small, low-quality, outdated studies
 - Do not account for improvements in surgical technique
 - Safety not adequately assessed

Neuraxial Anesthesia

■ Mechanism:
 ■ Sympathetic blockade → reduced arterial pressure
 → reduced venous pressure
 → reduced surgical stress

 \rightarrow stabilization of clotting factors

 \rightarrow reduced fibrinolysis

Evidence:

Conflicting

- Older, lower quality evidence positive
- Newer, higher quality evidence negative

Acute normovolemic hemodilution

Removal of 3-4 units of blood before surgery and simultaneous replacement with crystalloids or colloids

□ Theoretical example:

 \square if Hct = 0.40 and EBL = 1L \rightarrow RBC Loss = 400 cc

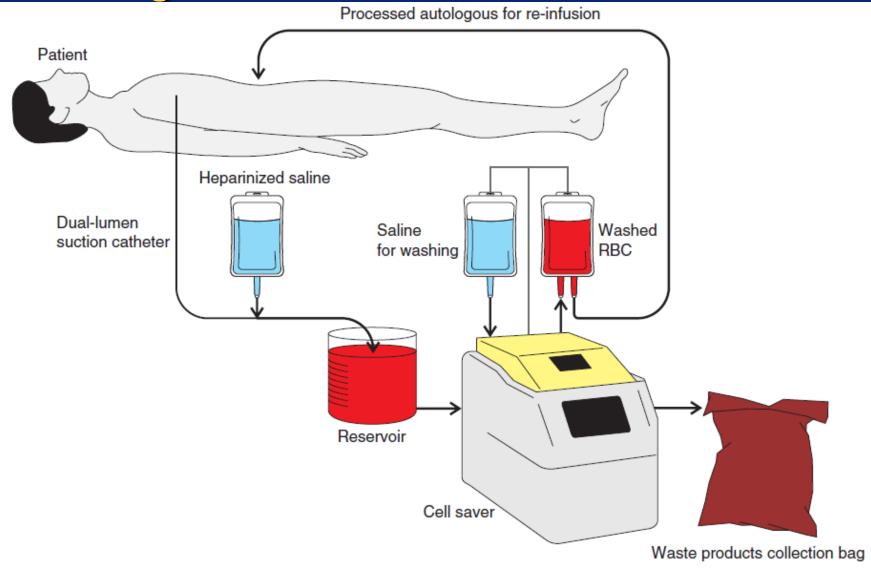
□ if Hct = 0.25 and EBL = $1L \rightarrow RBC Loss = 250 cc$

■ RBC conserved = 150 cc or ~ 2/3 of a unit of PRBC

Effectiveness questionable and not properly assessed

Safety questionable and not properly assessed

Anesthetic blood sparing techniques / Neuraxial anesthesia / ANH


- 1. Has to be effective X
- 2. Has to be at least as safe as transfusion **?**
- 3. Costs should be reasonable

Anesthetic blood sparing techniques / Neuraxial anesthesia / ANH

New versus old study dichotomy:

- Surgical techniques have improved substantially
 - Faster, less invasive (e.g., prostate / orthopedics)
- Current status of anesthetic blood sparing techniques:
 - Modest benefit on blood loss itself
 - Major benefit is improved visibility in surgical field
 - □ ↓ length of surgery + surgical control of bleeding = ↓ blood loss
 - Driving factor is surgical rather than PBM
 - Neuraxial techniques / fluid restriction / permissive hypotension

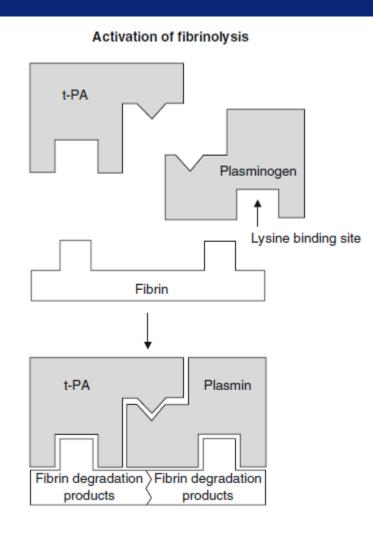
Cell Salvage

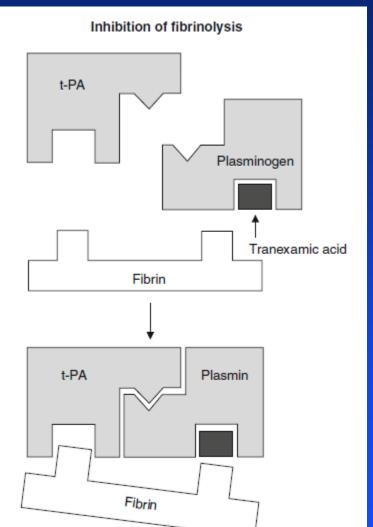
Complications are rare

- Hemolysis, air embolism, incomplete washing, infections
- Safer than allogeneic blood
 - Lower AE rates (0.027% versus 0.14%)
 - Better quality (fresh versus old blood)
- Indications
 - □ Anticipated blood loss > 500 mL (ASA guidance)
 - Anemia, antibodies or rare blood types, JW

Benefits □ Reduce RBC exposure **On average**, \downarrow **0.7 units**; \uparrow **avoidance** ~40% Much more effective in MBH Other blood products: ? Contra-indications Sepsis; Contaminated surgery; Malignance \square Leukocyte depletion filter \rightarrow 99% reduced bacterial contamination Reinfused tumour cells do not have metastatic potential

Ashworth et al. BJA 2010;105:401-416

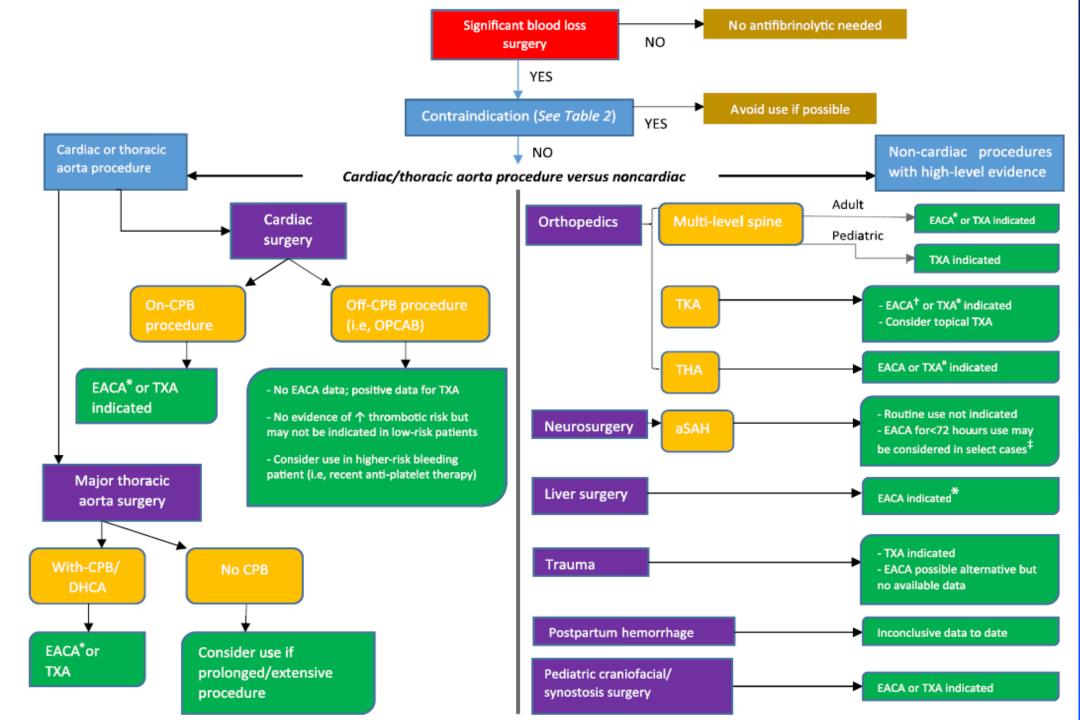



- 1. Has to be effective
- 2. Has to be at least as safe as transfusion
- 3. Costs should be reasonable

Pharmacologic Agents

- Antifibrinolytics
- Desmopressin
- Prothrombin complex concentrate
- Fibrinogen concentrate
- □ rFVIIa

Mechanism of Action: Tranexamic Acid


McCormack PL. Drugs 2012;72:585-617

Current Status

It definitely works ... in some populations
 Lots of high-level evidence in some areas, but not all
 Overall, reduces blood loss and transfusions by one-third
 Indications:

□ See figure

- □ Benefits > Risks ... but not in every case
 - Contraindications: Allergy, Hypercoagulable state
 - Caution: Seizure risk, renal failure, recent thromboembolic event, cirrhosis

Uncertainties

Dosing

- $\hfill\square$ 10 mg/kg IV \to 10 mg/L in plasma \to 80% inhibition fibrinolysis
- □ What dose for 100% inhibition?
- Studies used widely variable dosing
 - Recommendations based on studies rather than PK
 - Reasonable dose: 10 mg/kg bolus + 1 mg/kg/hour

Indication:

- INICE: Offer to adults for all surgical procedures with moderate (>500 mL) blood loss
- Or more targeted approach?

Trauma

Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial

CRASH-2 trial collaborators*

□ N = 20,211

Dose: 1g bolus + 1g infusion over 8 hours

Primary outcome: 28-day in-hospital all-cause mortality

	Tranexamic acid (n=10060)	Placebo (n=10067)	RR (95% CI)	p value (two-sided)
Any cause of death	1463 (14·5%)	1613 (16.0%)	0.91 (0.85-0.97)	0.0035
Bleeding	489 (4.9%)	574 (5·7%)	0.85 (0.76-0.96)	0.0077
Vascular occlusion*	33 (0.3%)	48 (0.5%)	0.69 (0.44-1.07)	0.096
Multiorgan failure	209 (2.1%)	233 (2.3%)	0.90 (0.75-1.08)	0.25
Head injury	603 (6.0%)	621 (6.2%)	0.97 (0.87-1.08)	0.60
Other causes	129 (1·3%)	137 (1·4%)	0.94 (0.74–1.20)	0.63

Data are number (%), unless otherwise indicated. RR= relative risk. *Includes myocardial infarction, stroke, and pulmonary embolism.

Table 2: Death by cause

CRASH-2 Collaborators Lancet 2010;376:23-32

	Tranexamic acid allocated	Placebo allocated			Risk ratio (95% CI)
Time to treatment (h)		20(12204/2220)			0 (0 (0 57 0 02)
≤1	198/3747 (5·3%)	286/3704 (7.7%)	-		0.68 (0.57-0.82)
>1-3	147/3037 (4.8%)	184/2996 (6·1%)			0.79 (0.64–0.97)
>3	144/3272 (4·4%)	103/3362 (3·1%)		₽	1.44 (1.12–1.84)
χ ² =23·516; p<0·0000					

	≤1 h (n=7451)	>1-3 h (n=6033)	>3 h (n=6634)
Continents			
Asia	1213 (16.3%)	2475 (41.0%)	3656 (55.1%)
Africa	2490 (33·4%)	1437 (23.8%)	872 (13·1%)
Central and South America	2453 (32.9%)	1456 (24·1%)	1355 (20.4%)
North America, Europe, and Oceania	1295 (17.4 %)	665 (11.0%)	751 (11·3%)

CRASH-2 Collaborators Lancet 2011;377:1096-101

Trauma

- Externally generalizable?
 - □ > 20,000 patients randomized
 - \square Number of patients from developed countries \rightarrow 382
 - \square Number of patients from Canada $\, \rightarrow \, 2$
 - \square Number of patients from UK $\, \rightarrow \,$ 135
 - \square Number randomized by central telephone system $\rightarrow 95$
 - "Hospitals with telephone access used a telephone randomisation service"

Cardiac Surgery

Tranexamic Acid in Patients Undergoing Coronary-Artery Surgery

Paul S. Myles, M.P.H., M.D., Julian A. Smith, F.R.A.C.S., Andrew Forbes, Ph.D., Brendan Silbert, M.B., B.S., Mohandas Jayarajah, M.B., B.S.,

□ N = 4631

Dose: 100 mg/kg \rightarrow seizures \rightarrow 50 mg/kg

Primary outcome: 30-day mortality + thromboembolic events

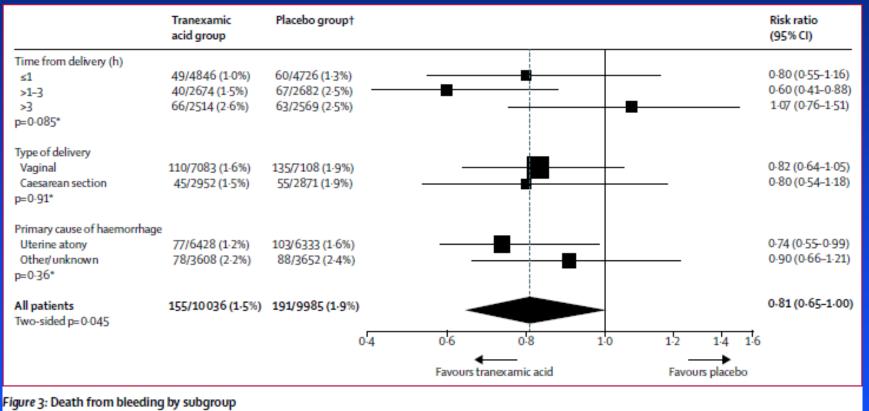
Cardiac Surgery

Outcome	TA (n = 2311)	Placebo (n = 2320)	Risk Ratio
Death or TE	16.7%	18.1%	0.92 (0.81 – 1.05)
Reoperation	1.4%	2.8%	0.49 (0.32 – 0.75)
Blood Product Tx	37.9%	54.7%	0.69 (P < 0.001)
Blood Product (Units)	3 (2-6)	4 (2-8)	P < 0.001
Seizures	0.7%	0.1%	7.62 (1.77 – 68.7)

Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial

WOMAN Trial Collaborators*

N = 20,060
Dose: 1 g; repeated x1 if needed
Primary outcome: 42-day all-cause mortality


WOMAN Trial Collaborators Lancet 2017;389:2105-2116

Outcome	TA (n = 10,036)	Placebo (n = 9,985)	Risk Ratio
Death or Hysterectomy	534 (5.3%)	546 (5.6%)	0.98 (0.87 – 1.10); P = 0.75
Death (Any cause)	227 (2.3%)	256 (2.6%)	0.88 (0.74 – 1.05); P = 0.16
Death (Bleeding)	155 (1.5%)	191 (1.9%)	0.81 (0.65 – 1.00); P = 0.045
Laparotomy (Bleeding)	82 (0.8%)	127 (1.3%)	0.64 (0.49 – 0.85); P = 0.002
Blood Product Tx	5461 (54%)	5426 (54%)	

WOMAN Trial Collaborators Lancet 2017;389:2105-2116

*Heterogeneity p value. †One patient excluded from subgroup analysis because of missing baseline data.

WOMAN Trial Collaborators Lancet 2017;389:2105-2116

	Tranexamic acid group	Placebo group	RR (95% CI)	p value
Thromboembolic events*	10033	9985		
Any event	30 (0-3%)	34 (0-3%)	0.88 (0.54–1.43)	0-603
Venous events	20 (0.2%)	25 (0-3%)	0.80 (0.44–1.43)	0.446
Deep vein thrombosis	3 (0-03%)	7 (0-07%)	0-43 (0-11-1-65)	0.203
Pulmonary embolism	17 (0-2%)	20 (0-2%)	0.85 (0.44-1.61)	0.611
Arterial events	10 (0.1%)	9 (0-09%)	1.11 (0.45-2.72)	0.827
Myocardial infarction	2 (0-02%)	3 (0-03%)	0.66 (0.11-3.97)	0.651
Stroke	8 (0-08%)	6 (0-06%)	1.33 (0.46-3.82)	0.599
Complications*	10033	9985		
Renal failure	129 (1.3%)	118 (1.2%)	1.09 (0.85–1.39)	0.505
Cardiac failure	110 (1.1%)	115 (1.2%)	0.95 (0.73-1.23)	0.710
Respiratory failure	108 (1.1%)	124 (1.2%)	0.87 (0.67-1.12)	0.274
Hepatic failure	29 (0-3%)	30 (0-3%)	0.96 (0.58–1.60)	0-882
Sepsis	180 (1.8%)	185 (1.9%)	0.97 (0.79–1.19)	0.756
Seizure	33 (0·3%)	43 (0-4%)	0.76 (0.49–1.20)	0.242

WOMAN Trial Collaborators Lancet 2017;389:2105-2116

GI Bleed

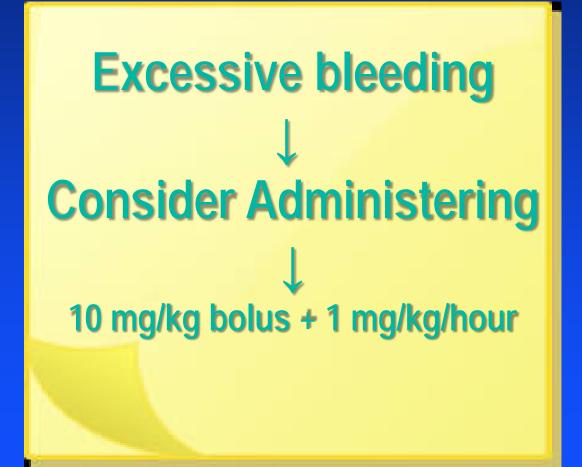
Effects of a high-dose 24-h infusion of tranexamic acid on death and thromboembolic events in patients with acute gastrointestinal bleeding (HALT-IT): an international randomised, double-blind, placebo-controlled trial

The HALT-IT Trial Collaborators*

N = 12,009
Dose: 1 g + 3g/24 hours
Primary outcome: 5-day bleeding mortality

HALT-IT Trial Collaborators Lancet 2020;395:1927-1936

Outcome	TXA N=5994	Placebo N=6015	RR (95% CI)
Death due to bleeding within 5 d	3.7%	3.8%	0.99 (0.82-1.18)
Arterial TE (MI/CVA)	0.7%	0.8%	0.92 (0.60-1.39)
Venous TE* Seizures	0.8% 0.6%	0.4% 0.4%	1.85 (1.15-2.98) 1.73 (1.03-2.93)
Transfusion	68.5%	69.1%	0.99 (0.97-1.02)


*higher in variceal bleed or liver disease

HALT-IT Trial Collaborators Lancet 2020;395:1927-1936

Tranexamic Acid

- 1. Has to be effective
- 2. Has to be at least as safe as transfusion
- 3. Costs should be reasonable

Tranexamic Acid – Summary

Restrictive Transfusion Threshold

JAMA | Special Communication

Patient Blood Management Recommendations From the 2018 Frankfurt Consensus Conference

Markus M. Mueller, MD; Hans Van Remoortel, PhD; Patrick Meybohm, MD, PhD; Kari Aranko, MD, PhD; Cécile Aubron, MD, PhD; Reinhard Burger, PhD; Jeffrey L. Carson, MD, PhD; Klaus Cichutek, PhD; Emmy De Buck, PhD; Dana Devine, PhD; Dean Fergusson, PhD; Gilles Folléa, MD, PhD; Craig French, MB, BS; Kathrine P. Frey, MD; Richard Gammon, MD; Jerrold H. Levy, MD; Michael F. Murphy, MD, MBBS; Yves Ozier, MD; Katerina Pavenski, MD; Cynthia So-Osman, MD, PhD; Pierre Tiberghien, MD, PhD; Jimmy Volmink, DPhil; Jonathan H. Waters, MD; Erica M. Wood, MB, BS; Erhard Seifried, MD, PhD; for the ICC PBM Frankfurt 2018 Group

Mueller et al. JAMA 2019;321:983-997

Restrictive Transfusion Threshold

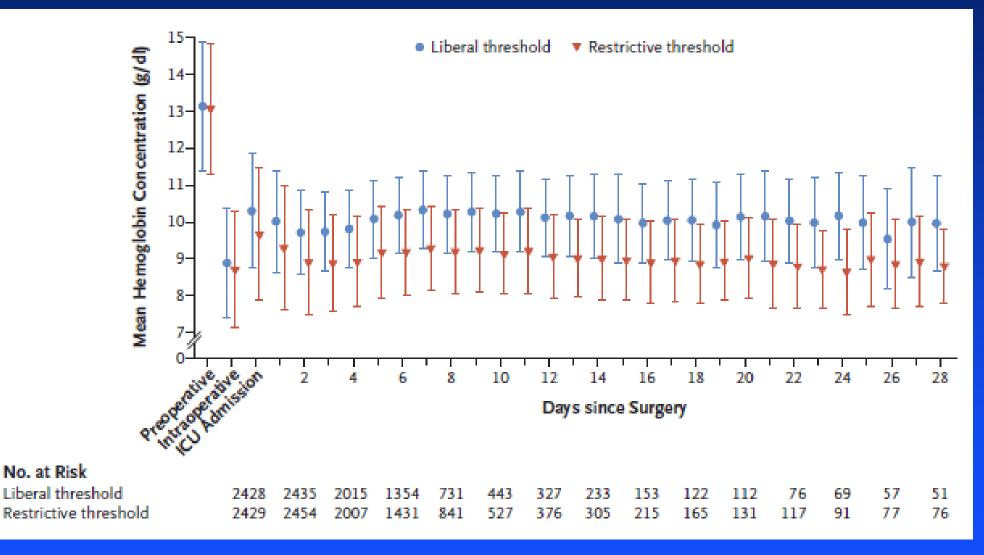
Table 2. Clinical Recommendations: Red Blood Cell Transfusion Thresholds

Clinical Recommendation	Level of Evidence
CR5—Restrictive RBC transfusion threshold (hemoglobin concentration <7 g/dL) in critically ill but clinically stable intensive care patients	Strong recommendation, moderate certainty in the evidence of effects
CR6-Restrictive RBC transfusion threshold (hemoglobin concentration <7.5 g/dL) in patients undergoing cardiac surgery	Strong recommendation, moderate certainty in the evidence of effects
CR7-Restrictive transfusion threshold (hemoglobin concentration <8 g/dL) in patients with hip fracture and cardiovascular disease or other risk factors	Conditional recommendation, moderate certainty in the evidence of effects
CR8—Restrictive transfusion threshold (hemoglobin concentration 7-8 g/dL) in hemodynamically stable patients with acute gastrointestinal bleeding	Conditional recommendation, low certainty in the evidence of effects
Abbroviations, CD, clinical recommendation, DDC, red blood cell	

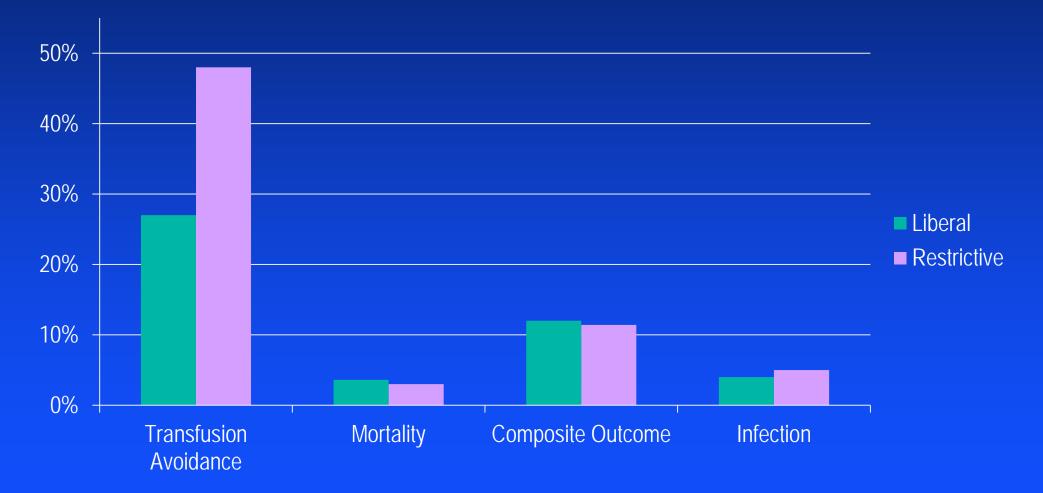
Editorial (Zeller, Kaufman)

Thresholds are 'particularly specific'

If sole consideration for transfusion is the Hb level, then a restrictive threshold should be used


Mueller et al. JAMA 2019;321:983-997

Restrictive or Liberal Red-Cell Transfusion for Cardiac Surgery


C.D. Mazer, R.P. Whitlock, D.A. Fergusson, J. Hall, E. Belley-Cote, K. Connolly,
B. Khanykin, A.J. Gregory, É. de Médicis, S. McGuinness, A. Royse, F.M. Carrier,
P.J. Young, J.C. Villar, H.P. Grocott, M.D. Seeberger, S. Fremes, F. Lellouche,
S. Syed, K. Byrne, S.M. Bagshaw, N.C. Hwang, C. Mehta, T.W. Painter, C. Royse,
S. Verma, G.M.T. Hare, A. Cohen, K.E. Thorpe, P. Jüni, and N. Shehata,
for the TRICS Investigators and Perioperative Anesthesia Clinical Trials Group*

Mazer et al. NEJM 2017;377:2133-44

- Higher-risk cardiac surgery
- Randomized before surgery
- **Restrictive group**:
 - □ Transfuse if Hb < 75 g/L
- Liberal group:
 - Transfuse if Hb < 95 g/L during surgery/ICU stay</p>
 - □ Transfuse if Hb < 85 g/L on ward
- Protocol suspended if rapid bleeding or hemodynamic instability due to bleeding

Mazer et al. NEJM 2017;377:2133-44

Mazer et al. NEJM 2017;377:2133-44

- 1. Has to be effective
- 2. Has to be at least as safe as transfusion
- 3. Costs should be reasonable

Caveat

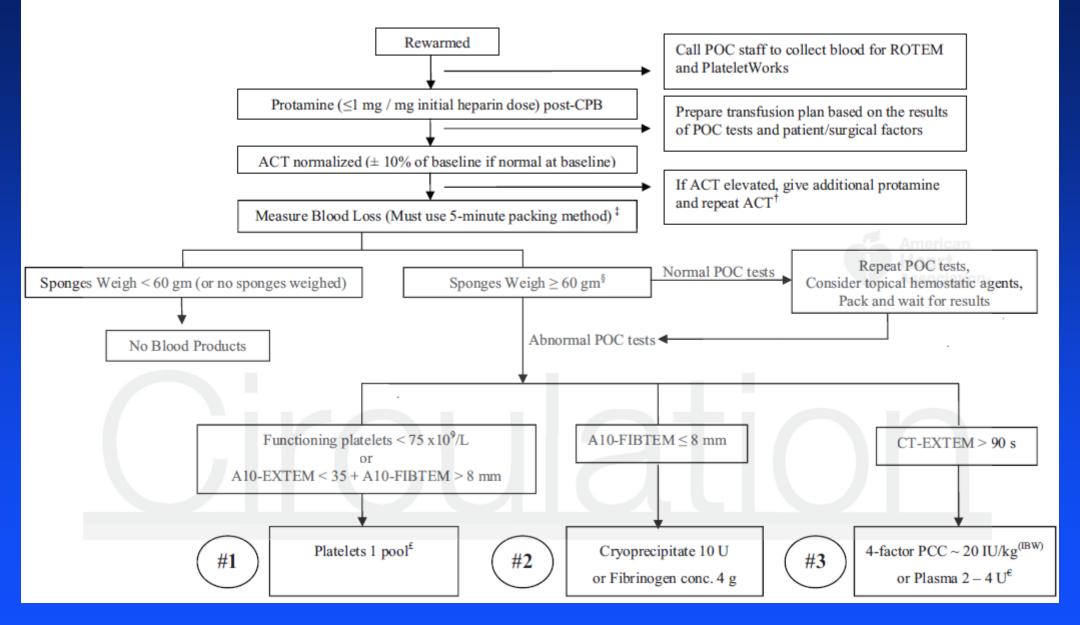
For the most part, studies have included <u>non-bleeding</u>, <u>euvolemic</u>, <u>stable patients without heart disease</u>, and have studied <u>fixed transfusion thresholds</u>

- Surgical patients, however, may be:
 - Bleeding and coagulopathic
 - Unstable and hypovolemic
 - Critically ill with limited organ reserve

Transfusion decision more complicated than just measuring Hb level

Optimizing Coagulation

Point-of-care guided coagulation management algorithms
 Whole-blood based assays

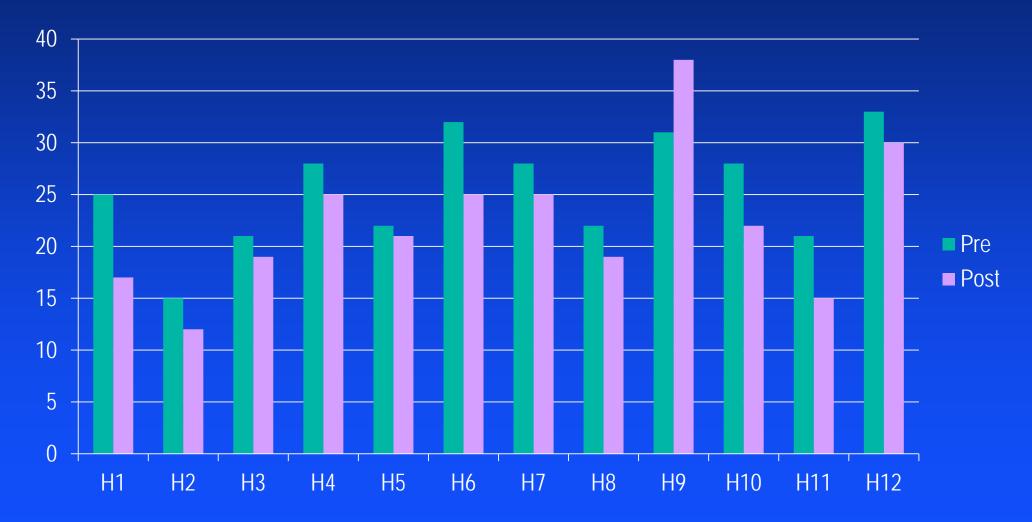

- Viscoelastic
 - ROTEM, TEG
- Platelet function
 - Multiple assays available

Point-of-Care Hemostatic Testing in Cardiac Surgery

A Stepped-Wedge Clustered Randomized Controlled Trial

Keyvan Karkouti, MD Jeannie Callum, MD Duminda N. Wijeysundera, MD, PhD Vivek Rao, MD, PhD Mark Crowther, MD Hilary P. Grocott, MD Ruxandra Pinto, PhD Damon C. Scales, MD, PhD TACS Investigators

Cardiac Surgery Blood Transfusion Algorithm*


Results

7402 patients in the study

□ Control phase n = 3555; Intervention phase n = 3847

Outcome	Incidence
RBC	45%
Platelet	25%
Plasma	22%
Cryoprecipitate	5%
Major Bleeding	24%
Major Complications	10%

Major Bleeding

Results

Outcome	Relative Risk Reduction
RBC	0.91 (0.85 – 0.98); P = 0.02; NNT = 24.7
Platelet	0.77 (0.68 – 0.87); P < 0.001; NNT = 16.7
Plasma	NC
Cryoprecipitate	NC
Major Bleeding	0.83 (0.72 – 0.94); P = 0.004; NNT = 22.6
Adverse Outcomes	NC
Processes of Care	NC

Optimizing Coagulation

1. Has to be effective

- 2. Has to be at least as safe as transfusion
- 3. Costs should be reasonable

The 3 Pillars of PBM – Intraoperative

Optimize erythropoiesis

□ Schedule surgery with red cell mass in consideration **PCC**

Intravenous iron for acute alteration of risk ?

The 3 Pillars of PBM – Intraoperative

Minimize blood loss

- Anesthetic blood sparing techniques
- Acute normovolemic hemodilution
- 🗆 Cell salvage 🚽
- Pharmacological therapies (Tranexamic acid)
- POC-based coagulation management algorithms

The 3 Pillars of PBM – Intraoperative

Manage anemia

- □ Improve tolerance of anemia
- Evidence-based transfusion thresholds

True or False

- Anesthetic blood sparing techniques are highly effective in reducing perioperative blood transfusions
- Salvaged blood is of higher quality than stored blood
- Tranexamic acid use should be considered for surgeries with moderate (>500 mL) blood loss
- Except for patients who are allergic, tranexamic acid can be offered to all patients
- Adhering to restrictive transfusion thresholds reduces transfusions and saves lives
- POC assays are effective because they allow for timely, targeted transfusion therapy

Questions?

