# ALLOIMMUNIZATION SECONDARY TO PREGNANCY AND TRANSFUSION IN WOMEN OF CHILD BEARING AGE

Nadine Shehata MD, MSc

Mount Sinai Hospital, Departments of Medicine/Laboratory Medicine and Pathobiology

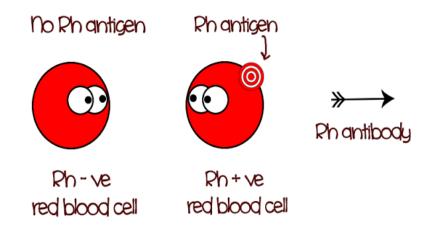
January 22, 2021



### **Objectives**

### **Overall objective**

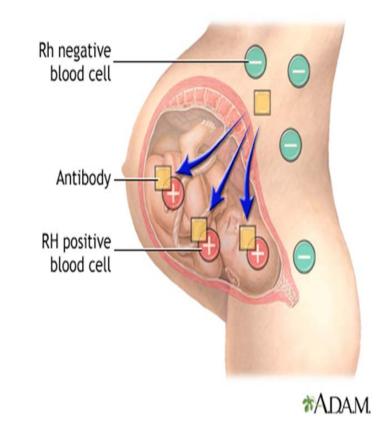
To appreciate the effect of red cell alloimmunization in women of child bearing age


### Alloimmunization from paternal exposure

Know the indications for RhIG to prevent D alloimmunization

### Alloimmunization from Red Cell Transfusion

Appreciate the changes in hemoglobin levels during pregnancy, indications and alternatives for transfusion peripartum to prevent red cell allommunization


# Alloimmunization (development of an alloantibody) occurs following from



- Exposure to paternal antigens by fetalmaternal hemorrhage during pregnancy
- 2. Exposure by RBCs

### IgG maternal alloantibodies traverse the placenta

Can bind to fetal antigens on red cells resulting in destruction of fetal/neonatal red cells=Hemolytic Disease of the Fetus and Newborn (HDFN)



# The ability to develop an alloantibody depends on

The immunogenicity and embryonic development of the red cell antigen

The volume of red cell antigen exposure

The immune responsiveness of the individual

e.g. alloimmunization following exposure to paternal D antigens occurs in 16% of women

# The ability to develop an alloantibody depends on the **red cell antigen**

Immunogenicity of the antigen

Polypeptide antigens give rise to IgG e.g. Rh vs. carbohydrate antigens tend to give rise to IgM-class antibodies (ABO), P, Lewis and I

Embryonic development of the antigen

D antigen appears as early as 38 days gestation vs. AB antigens postnatally

# The ability to develop an alloantibody depends on the volume of **red cell antigen exposure**

### Transplacental hemorrhage

Is high in each of the trimesters

1st: 56% (0.07 ml)

2<sup>nd</sup>: 63% (0.08 ml)

Increases with invasive procedures, trauma, delivery

#### **Transfusion**

RhD: Primary immune response: 15% after 1 ml RBCs and 70–90% after 250 ml

Secondary immune response may occur after exposure to as little as 0.03 ml RBCs

# The ability to develop an alloantibody depends on the immune responsiveness of the individual

Characteristics of the antibody

Ability to present the red cell antigen (e.g. HLA genotype)

Ability to lyse

Ability to suppress erythropoiesis

ABO incompatibility between mother and fetus, less lysis with ABO incompatibility

# Spectrum of HDFN for those who develop an alloantibody



No disease

No fetal destruction of RBCs



Mild disease

Hemolytic disease of the newborn



Severe disease

Hemolytic disease of the fetus requiring intrauterine transfusion



Fetal hydrops

| Antigen | Severe Disease in Alloimmunized Pregnancies* |
|---------|----------------------------------------------|
| D       | 20%                                          |
| K       | 11-50%                                       |
| С       | 17-26%                                       |
| Duffy   | 14-16% (Duffy a> b)                          |
| E       | 1%-18%                                       |

<sup>\*</sup>Requiring intrauterine transfusion or neonatal exchange transfusion

### Prevention of Alloimmunization

#### **Paternal**

Rh Immune globulin for exposure to D antigen in D negative mothers

#### **Transfusion**

Transfusion avoidance

Antigen negative transfusion e.g. D-, K-

# Rh immune globulin should be administered within 72 hours in a D negative woman for

- A. Abdominal trauma
- B. Vaginal spotting at 12 weeks gestation
- C. All of the above
- D. None of the above

# Rh immune globulin is a plasma derived IgG protective for exposure to D antigen

Pooled plasma product derived from donors with high anti-D antibodies

Risk of contracting viruses reduced by the manufacturing process

#### Mechanism

The antibody coated cells, are destroyed by the spleen before D is seen by antigen-presenting cells

The antibody alters D antigen processing reducing T cell and B cell activation

# Prophylactic RhIG has reduced alloimmunization from 16% - ~ 0.2-1% in D negative women

300 micrograms suppresses the response of up to 15 ml of RBCs

300 micrograms to all D-negative women at 26-28 weeks' gestation, and within 72 hours of delivery (for fetuses that are D+ or D unknown)

# Administer Rhlg within 72 hours of a sensitizing event: may be given up to 10 days of the event

Prior to 12 weeks gestation (fetoplacental blood volume is 3ml) 120-300  $\mu g$ 

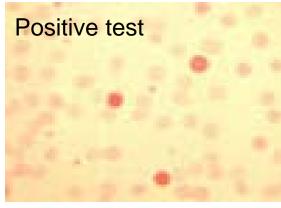
Between 12-20 weeks gestation

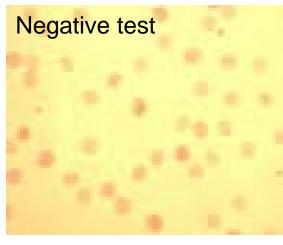
300 μg

#### More than 20 weeks

Minimum dose 300 μg

Rosette/Betke Kleihauer/Flow cytometry to determine presence and volume of a bleed


#### Postpartum


120-300  $\mu g$  if the neonate is D+ and BK/flow cytometry to determine presence and volume of a bleed

# The Betke Kleihauer acid elution test detects Hemoglobin F

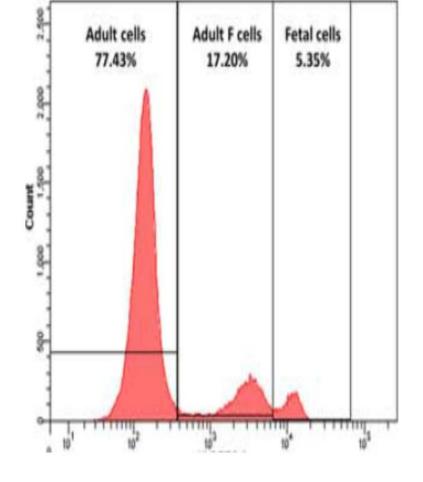
Fetus: Hemoglobin F is the predominant hemoglobin of the fetus, is more acid-resistant than other hemoglobins (fetal cells appear as dark reddish/pink cells)

Adult: Hemoglobin F usually < 1% in adults, concentrated in F cells
Predominant HbA is denatured by acid and eluted=ghost cells
ml bleed=% fetal cells (#fetal/#counted) x 5L (BV)





# Flow cytometry has better accuracy: can differentiate fetal cells from adult F cells


F cells contain 20-25% HbF in an adult

F cells increases during pregnancy

Can be as high as 7% by 32 wks

F cells increased with hemoglobin disorders

Better accuracy in estimating volume of



### Objectives

### **Overall objective**

To appreciate the effect of red cell alloimmunization in women of child bearing age

### Alloimmunization from paternal exposure

Know the indications for RhIG to prevent D alloimmunization

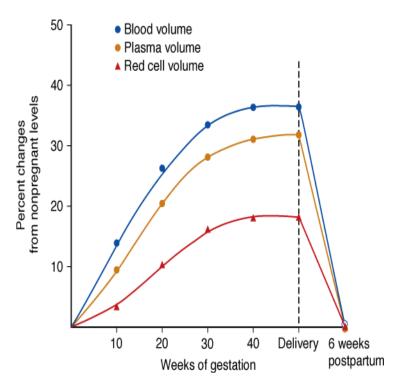
#### Alloimmunization from RBC transfusion

Appreciate the changes in hemoglobin levels during pregnancy, indications and alternatives for transfusion peripartum to prevent red cell allommunization

### Would you transfuse RBCs?

25 year old female G1P0 at 27 weeks gestation with perivaginal spotting, Hb 65 g/L

- 1. Yes
- 2. No


# Are the benefits worth the risk of exposure to red cell antigens?

Is the mother compromised by the anemia?

Is the fetus compromised by maternal anemia?

Are there alternatives?

# Physiological changes during pregnancy result in a lower Hb level



Blood volume increases by 1.5 L

Plasma volume increases by 50%

Red blood cell mass increases by 25%

Lower hemoglobin levels occur

because plasma volume increases>

Cunning FE et al. Williams Obstet 23 ed.

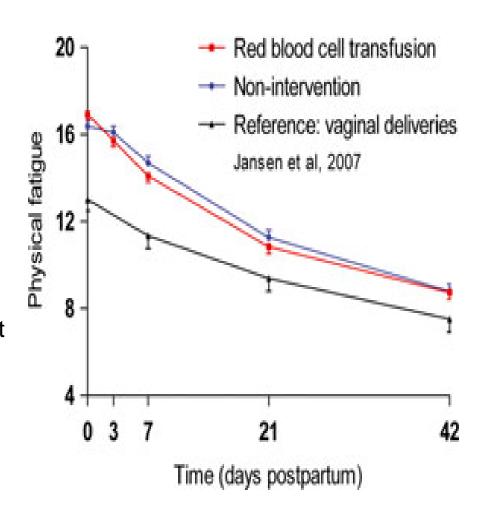
red cell volume

### Anemia is defined as a hemoglobin level...

Non pregnant: <120 g/L

1st trimester : <110 g/L

2<sup>nd</sup> and 3<sup>rd</sup> trimester: < 105 g/L


Postpartum: < 100 g/L

# Postpartum: Women can tolerate a reduction to 50% of their hemoglobin concentration

Patients: Postpartum with Hb 48- 79 g/l 12–24 hours after delivery (mean age 31 yrs) and hemodynamically stable

Randomized to RBC vs no RBC

Fatigue was increased after 7 days but was the same after 42 days



# The most common cause of anemia in pregnancy is iron deficiency: in 18%

Marked increase in iron demands in pregnancy

27-30 mg elemental iron in a prenatal vitamin/total iron requirement-1.2 g during the entire pregnancy

Higher frequency with iron deficiency in a prior pregnancy, multiparty, low

SES, brief intervals between pregnancy, poor nutritional status, PPH

Diagnosed by ferritin <30 μg/L or fasting iron saturation <15%

## Iron preparations

| Preparation                 | Elemental iron (mg) |  |
|-----------------------------|---------------------|--|
|                             |                     |  |
| Oral formulations           |                     |  |
| Prenatal vitamin            | 27-35mg/tablet      |  |
| (Ferrous fumarate)          |                     |  |
| Ferrous gluconate           | 35/tablet           |  |
| Ferrous sulfate             | 65/tablet           |  |
| Ferrous fumarate            | 100/tablet          |  |
| Polysaccharide-iron Complex | 150/capsule         |  |
|                             |                     |  |
| Heme-iron polypeptide       | 11mg/tablet         |  |
| Intravenous formulation     |                     |  |
| Iron sucrose                | 20 mg/ml*           |  |

<sup>\*</sup> The dose is calculated as (prepregnancy weight (kg)  $x[(target\ hemoglobin-actual\ hemoglobin\ g/L)/10])$  x 2.4 +500. Maximum dose/infusion/day is 300 mg. Doses higher than 300mg need to be administered as divided doses.

### Response to IV Iron faster than oral

Response to oral iron

Hb rise by 1 g/L per day after starting iron

Return to normal hemoglobin by 6-8 weeks

Iron stores replenished by 3-6 months

Response to iv iron is 2x as fast

Well tolerated, no hypersensitivity reactions in 599 patients in a systematic review

Indications: moderate to severe anemia, no response to oral, side effects to oral iron, limited time to delivery

# What is the role of erythropoiesis stimulating agents (e.g. erythropoietin)?

Most of the use is in patients with renal failure during pregnancy

It is a large molecule and it is not thought to cross the placenta

# Royal College of Obstetrics and Gynecology advises against

The routine use of erythropoiesis stimulating agents Exceptions

> Patients who do not have blood readily available Patients with renal failure

# Complications because of iron deficiency anemia

#### Mother:

### **Fatigue**

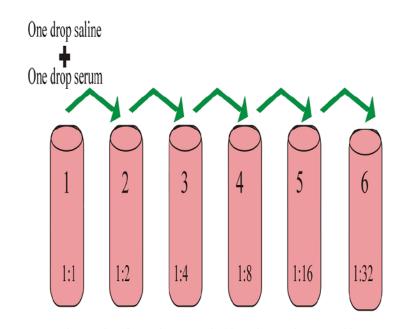
Anemia may result in increased transfusion rates

Iron supplementation results in a lower incidence of Hb<100 g/L at delivery vs placebo (7% vs. 16%; RR, 0.45 [CI, 0.25 to 0.82])

#### Fetus:

#### Controversial

Obstetrical ultrasound detects fetal compromise by maternal anemia


# When should patients be transfused in the antepartum setting?

**RCOG** suggests "There are no firm criteria for initiating red cell transfusion. The decision to provide blood transfusion should be made on clinical and hematological grounds." In the absence of hemorrhage or hemodynamic instability RBC transfusion is almost always required when the Hb is< 60 g/l and is rarely required when the Hb >100 g/l."

**ACOG** suggests "Maternal transfusion should be considered for fetal indications"

## If an alloantibody is detected...

- The father's phenotype for the antigen and zygosity
- If the fetus is potentially affected
  - Serial antibody titres: a method to determine strength of the antibody
  - Antibody titre: greatest dilution with a positive agglutination reaction



Take one drop from tube no 1 and add to tube 2 and carry on this way

Serial dilution

### The alloantibody titre should be monitored

D, c

In a primagravida

Every 4 wks in the 1<sup>st</sup> and 2<sup>nd</sup> trimester or every 2 wks if there is a

rise and in the 3<sup>rd</sup> trimester

### Referral to high risk centers if

### For a first pregnancy

When the alloantibody >1:16-32, D, c, E

At any alloantibody titre for K as titres may not correlate with the severity

of anemia: K alloantibodies also suppresses fetal erythropoiesis

Subsequent alloimmunized pregnancy where the first had HDFN

Once pregnancy is confirmed

### Summary

#### **Overall objective**

To appreciate the effect of red cell alloimmunization in women of child bearing age

Alloimmunization leads to risk of HDFN

### Alloimmunization from paternal exposure

Know the indications for RhIG to prevent D alloimmunization RhIg for any potential FMH within 72 hours

#### Alloimmunization from RBC transfusion

Appreciate the changes in hemoglobin levels during pregnancy, indications and alternatives for transfusion peripartum to prevent red cell allommunization

Transfuse if symptomatic mother or fetus appears to be compromised e.g. fetal tachycardia, K negative RBC if transfusion needed

# QUESTIONS?