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Alloimmunization to red blood cell (RBC) antigens represents a challenge for physicians caring for women of
child bearing potential. Exposure to non-self RBC antigens may occur during transfusion or pregnancy leading
to the development of antibodies. If a subsequent fetus bears that antigen, maternal antibodies may attack the
fetal red blood cells causing red cell destruction and clinically significant hemolytic disease of the fetus and new-
born (HDFN). In the most severe cases, HDFN may result in intrauterine fetal demise due to high output cardiac
failure, effusions and ascites, known as “hydrops fetalis”. This article reviews strategies formanagement and pre-
vention of RBC alloimmunization in women of child bearing potential.
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Alloimmunization to red blood cell (RBC) antigens may occur fol-
lowing a blood transfusion, fetal maternal hemorrhage (FMH) during
pregnancy or parturition, or through other blood exposure. The exposed
patientmay develop antibodies to any non-self RBC antigen. Thoughpa-
tients are tested for ABO and RhD type to avoid incompatible blood
transfusion, rates of alloimmunization in the general population range
from 1–10% of transfusions [1, 2]. The incidence of alloimmunization
may be as high as 60% in chronically transfused patients with underly-
ing hemoglobinopathies, hematologic malignancies, renal failure or
organ transplant [3]. Women of childbearing potential represent a chal-
lenging population for transfusion services to manage, as
alloimmunization may have devastating consequences for the fetus,
the most severe of which his hydrops fetalis, however transfusion
matching for every foreign RBC antigen is logistically difficult [4]. Fur-
ther, RBC transfusion of the mother during or after delivery due to
bleeding is complicated by RBC alloimmunization, particularly when
themother has an antibody to a high frequency RBC antigen. This article
reviews strategies and outcomes for the testing and management of an
alloimmunized mother with an affected fetus, as well as prevention
strategies to avoid RBC sensitization.
Detection of Alloimmunization

Most Western countries have implemented screening programs for
detection of RBC alloimmunization in pregnancy; however, the fre-
quency and timing of those screening programs vary [5, 6]. In theUnited
States, routine blood bank testing to assess maternal blood type (ABO),
RhD and for any unexpected RBC IgG antibodies using an indirect anti-
globulin test (IAT) is recommended for all pregnant women. The Amer-
ican College of Obstetrics and Gynecology (ACOG) recommends testing
mothers at their first prenatal visit [7].

First trimester screening has been shown to be approximately 77.8%
sensitive for clinically significant, RBC antibodies resulting in hemolytic
disease of the fetus and newborn (HDFN). However, the sensitivity
varies by antibody specificity. For example, first trimester screening
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for clinically significant anti-E was only 57.1% sensitive in one study [8].
Blood group antibodies differ in their risk of causing clinically significant
HDFN. Up to 50% of RBC antibodies detected by screening may be clini-
cally insignificant as they are antibodies against antigens that are poorly
expressed on fetal RBCs, such as Lewis antibodies, or because they are
IgM antibodies, which will not cross the placental barriers, such as
anti-N [9, 10]. The most common clinically significant alloantibodies
causing HDFN include anti-D, anti-E, anti-c and anti-K; however, over
50 non-ABO blood groups have been implicated in HDFN [11].

Additional antibody testing is recommended by ACOG for RhD neg-
ative mothers between 28–29 weeks gestation prior to administration
of RhD immunoglobulin (RhIg) [7, 12]. This may detect RhD sensitiza-
tion due to early FMH. Some studies have questioned the utility of addi-
tional screening in RhDpositivemothers [13-15]. However, up to 27% of
severe HDFN cases occur unexpectedly in RhD positive mothers with
negative first trimester RBC antibody screens. Risk factors for late
alloimmunization included a history of blood transfusion, increasing
parity and amniocentesis or chorionic villus sampling with the current
pregnancy [16]. The most severe fetal outcomes occurred in fetuses of
mothers who developed anti-c, indicating that mothers who are Rhc
negative may particularly benefit from additional testing later in preg-
nancy to allow for timely interventions [16, 17]. In the United Kingdom,
screening is recommended at initial prenatal visit and at 28 weeks ges-
tation in all mothers, regardless of RhD status [5].

Prevalence of Alloimmunization

Reported rates of alloimmunization in women of childbearing po-
tential vary greatly depending upon the period and manner in which
the data were collected. In the United States, a representative series of
22 102 blood samples from women of reproductive potential (age 15–
44 years) identified RBC antibodies in 1.15%, of whom 18% hadmultiple
antibodies [18]. Luckily, rates of clinically significant HDFN are much
lower at 3/100000 to 80/100000 live births [19]. In modern cohorts in
the Netherlands, RBC alloimmunization detected by first trimester
screening occurred in 1232/100000 pregnancies. Of these, 400/100000
were clinically significant, with the most common specificities being
anti-D, anti-E, anti-K and anti-c [8]. In Sweden, 0.4% of 78 145 pregnan-
cies were complicated by non-ABO alloimmunization [6]. In Africa, the
prevalence of RhD negativity is less common in the population; how-
ever, due to barriers to prenatal testing and care, rates of anti-D in
women of child bearing potential are as high as 2–12% [20-22].

The possibility of alloimmunization varies between populations
based on the prevalence of blood group antigens within the population.
For example, the frequency of RhD negativity is estimated at 15–17%
among people of European/North American ancestry. This falls to 3–
8% in people of African and Indian ancestry. In Asian populations, RhD
negativity may be as low as 0.1–0.3% of the population [23, 24]. The
prevalence of other RBC antigens may vary widely between popula-
tions, resulting in varied rates of alloimmunization.

Where ABO incompatibility occurs between mother and fetus,
studies have shown a protective effect against further RBC
alloimmunization. Studies prior to routine administration of RhIg pro-
phylaxis showed that 16% of RhD negative mothers pregnant with
RhD positive fetuses became sensitized; however, rates of sensitization
decreased to 2%when therewas ABO incompatibility in addition to RhD
incompatibility [19]. Therefore, population frequencies of ABO blood
types may exert further effects on maternal RBC sensitization.

In addition to ABO discrepancy, other maternal factors may influ-
ence the risk of alloimmunization. Prior major surgery, RBC or platelet
transfusion, multiparity, prior male child or operative removal of a
prior placenta have been associated with RBC alloimmunization [25].
Maternal risk factors for RhD sensitization despite RhIg prophylaxis in-
clude conditions related to FMH or insufficient RhIg dose, such as
assisted vaginal delivery, caesarian section, post-maturity (N42
weeks), maternal age or maternal red blood cell transfusion; however,
none of these was present in 43% of RhIg failures [26]. Other factors
that have been significantly associated with rates of sensitization to
RBC antigenswithin the general population include age at time of trans-
fusion and numbers of transfusions received [27, 28]. Female gender has
variably been associated with increased rates of RBC alloimmunization;
however, that risk is obviated when controlled for numbers of transfu-
sion exposure events [29]. Women who are HLA-DRB1*15 positive
also represent a group that is at increased risk for forming RBC antibod-
ies [30, 31].

Murine models of RBC alloimmunization to transfused cells are
shedding light on additional risk factors for alloimmunization that
have yet to be fully studied in humans [32, 33]. In mouse models, RBC
alloimmunization has been associated with donor or product specific
factors, including longer storage duration [34] and inversely related to
the efficacy of leukoreduction and platelet reduction [32].
Alloimmunization has also been associated with recipient factors, such
as faster rate of RBC clearance [35] and heightened recipient inflamma-
tory state at the time of exposure [36], which has been confirmed in
human studies [37]. Historically, all of these models have relied on
transfusion of RBCs; however, novel murine models of pregnancy-re-
lated alloimmunization to human RBC antigens have been developed
[38]. These novel models will allow for further mechanistic studies of
maternal sensitization not possible in humans [39].

Monitoring and Management of the Sensitized Mother and Fetus
During Pregnancy

Once amother is identified as having a clinically significant RBC allo-
antibody, further monitoring and evaluation is required. For first preg-
nancies affected by maternal anti-D, antibody titers may be predictive
of disease severity [19]; however, blood banks may have different criti-
cal titer thresholds, often 1:16–32 [9]. Unfortunately, titers are less pre-
dictive in subsequent pregnancies orwith other antibodies, such as anti-
Kell, which has been shown to cause significant HDFN even at low titers
[40, 41]. Titer thresholds and management strategies have been pro-
posed formaternal antibodies other than anti-D and anti-Kell; however,
the evidence is limited as to whether they predict or mitigate clinical
outcomes [42]. In addition, historic titer thresholds are based on the ti-
ters being performed using conventional tube methods. It is unclear if
other methodologies, such as gel-based platforms, are equivalent [43,
44]. Even with standardized procedures, titer proficiency testing
shows wide variability between centers andmethodologies, so serial ti-
ters should be performed at the same institution to facilitate interpreta-
tion [5, 45].

Titer alonemay not be the single-best predictor of clinical potency of
maternal antibodies. The degree of fucosylation of IgG antibodies has
been shown to influence the pathogenicity in HDFN. For RhD IgG anti-
body, less fucosylation predicts increased phagocytosis on monocyte-
based antibody dependent cellular cytotoxity testing and correlates
with fetal hemoglobin levels [46]. However, the influence of IgG
fucosylation when directed against other RBC antibodies is variable
[47]. Further research is necessary to apply the clinical implications of
these findings.

If paternal identity is confirmed, fetal risk of carrying the implicated
antigen should be determined by assessing paternal zygosity [48]. For
RhD, this requires paternal RHD genetic testing which is usually avail-
able at reference laboratories. For antigens such as Kell/k, routine
blood bank antigen phenotyping of the father may determine if the
fetus has a 50% or 100% chance of carrying the implicated antigen.
Non-invasive, high throughput testing platforms testing cell-free DNA,
fetal DNA circulating in maternal plasma, for RhD have been developed
and implemented in Europewith excellent effect [49-51]. As a screening
test for potentially affected pregnancies, they have been shown to be
N99.3% sensitive at 10–11weeks gestation, allowing for very earlymon-
itoring and intervention [50]. When implemented as a routine test at
24–26 weeks gestation for RhD negative mothers, the sensitivity of
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RhD detection was 99.9% and pregnancies with RhD negative fetuses
avoided unnecessary RhIg administration [52, 53]. In Norway, the Neth-
erlands, theUK, and Finland, RhDnegativemotherswith negative initial
antibody screens are routinely offered cell-free fetal DNA testing for
RhD at 14–29 weeks, limiting unnecessary RhIg administration [54-
57]. Cell-free fetal DNA testing is feasible as early as 9 weeks gestation
in alloimmunized mothers, and has been used to test for other RBC
(RhC/c, RhE, Kell) and platelet antigens [56, 58]. Currently, this testing
is available through a reference laboratory in the United States and
has been shown to be accurate in all three trimesters of pregnancy
[59]. Some authors question if routine screening using cell-free fetal
DNA in populations that are of non-European descent is ready. How-
ever, with advances in genomic testing technology, this technique has
the potential to be widely applicable for testing multiple RBC antigens
in diverse populations [60].

As the pregnancy progresses, serial RBC antibody titersmay be used.
Once a critical titer threshold is reached, and the fetus is determined to
be at risk of carrying the antigen by paternal zygosity testing ormore di-
rect measurements or the fetal result is unknown, the fetus must be
assessed for clinical anemia. In 1953, Bevis, et al. identified that bilirubin
levels in amniotic fluid correlated with degree of fetal hemolysis and
anemia [61]. Liley, et al. expanded on that observation and defined
three levels of risk of HDFN based on gestational age and amniotic
fluid deviation in optical density at 450 nm (ΔOD 450) [62]. The Liley
curve was valid beginning at 27 weeks of gestation which limited its
ability to predict severely affected fetuses early in the pregnancy, so
later investigators extrapolated the risk curves down to 16weeks gesta-
tion to allow for earlier identification and intervention [63]. In 1993,
Queenan, et al. used the same ΔOD 450 measurement to classify four
zones of threat to the fetus and provided recommendations onmonitor-
ing and intervention at the different levels of severity based on gesta-
tional age [64]. All of these techniques rely on the availability of
amniocentesis, an invasive procedure that carries an inherent risk to
the mother and fetus; therefore, investigators sought to identify a
non-invasive predictor of fetal anemia.

In the early 2000s, a landmark study demonstrated the utility of in-
trauterinemonitoring of fetalmiddle cerebral artery peak systolic veloc-
ity (MCA-PSV) as a non-invasive surrogate marker of fetal anemia in
affected fetuses [65]. Current guidelines recommend fetal assessment
at 16–24 weeks gestation with cerebral MCA-PSV measurements [7].
These velocities may be serially monitored throughout the pregnancy
with limited risk to the fetus or mother, unlike repeated amniocentesis.
If the velocity is N1.5 multiples of the median for gestational age, that is
predictive of moderate to severe anemia and further invasive assess-
ment of fetal anemia with a potential for intervention is required [65-
70]. Algorithms for management define specific timeframes in which
to obtain and follow MCA velocity depending upon gestational age
[48, 71].

After a fetus is determined to be at risk of significant anemia based
onMCA-PSV, they should be offered in-utero blood sampling and possi-
ble intrauterine transfusion. These invasive techniques require special-
ized expertise and have a 1–3% risk of fetal adverse events [72, 73].
Historically, transfusions have been delivered into the peritoneal cavity
of the fetus, though modern techniques of ultrasound guided
cordocentesis allow for direct testing of fetal hemoglobin and infusion
of blood products through the umbilical vein at the placental insertion
or intrahepatic vein. Most centers perform in-utero transfusions
through 35 weeks gestation, with anticipation of induction of labor at
37–38 weeks gestation depending upon the degree of fetal anemia
[74]. Coordination of this procedure takes a multidisciplinary approach,
including obstetricians, maternal-fetal-medicine specialists, transfusion
medicine and pediatricians, as there is a risk of urgent need for pre-term
delivery should there be a procedural complication [75].

In severely affected pregnancies, the fetus may be affected early in
gestation, prior to technical feasibility of in-utero transfusions. The use
of pooled intravenous immunoglobulin (IVIg) given to mothers, which
has been shown to have efficacy in the synonymous neonatal
alloimmune thrombocytopenia, has been used in high doses early in
gestation to delay or limit the need for in-utero transfusions [76-79].
Plasma exchanges on the mother have also been used to reduce anti-
body titer in cases when a mother had a significantly affected previous
pregnancy [80]. The combination of IVIg and plasma exchange used in
severely affected mothers is supported by case reports demonstrating
fetal safety and tolerability [81-86]. There are technical challenges to
the use of plasma exchange and IVIg in mothers, such as calculations
of total blood volume and the need for adequate IV access; however,
these therapies may offer opportunity for fetal survival when maternal
antibody titer and previously affected pregnancies predict a potential
for fetal demise.

If the maternal antibody is to a high frequency RBC antigen,
obtaining rare blood units for in-utero transfusion as well as for mater-
nal transfusion at delivery may require special care and coordination. In
circumstances where antigen negative blood is not available, maternal
blood has been collected and successfully used for in-utero transfusion
and in preparation for postpartum hemorrhage [87-89]. A failure to
take into consideration those antibodies in the mother may result in
an acute hemolytic transfusion reaction. When limiting transfusion is
of paramount importance, supportive therapy to maximize maternal
red blood cell mass through the use of iron and erythropoietin has
been used, in addition to banking of autologous blood for delivery [90].

Prevention of Alloimmunization

The majority (83%) of severe HDFN cases are due to previous preg-
nancy, thus the discussion about prevention pertains only to strategies
aimed at preventing alloimmunization caused by transfusion, which
cause the minority of cases [91]. However, a number of strategies exist
to prevent RBC alloimmunization due to transfusion from occurring in
women of child bearing potential. Prior to any non-emergent transfu-
sion, all patients should have their ABO and RhD type determined, as
well as testing for any unexpected RBC antibodies [9]. For women of
childbearing potential, the use of RhD negative blood in situations
where RhD type is unknownprevents sensitization to this highly immu-
nogenic antigen. In some countries, standard blood bank practice in-
cludes matching for Kell (K1) to prevent sensitization in women of
childbearing potential [92-94]. In women requiring transfusion with
underlying hemoglobinopathies, rates of alloimmunization may be as
high as 30–60% [95, 96]; however, the use of prophylactic matching at
RhD/CE and Kell has been successful in limiting alloimmunization
rates [97]. In studies of surgical patients, extended matching for multi-
ple antigens (RhD, Rhc/C, RhE, Kell, Fya, Jka and S) reduced
alloimmunization rates by 64% [4]; however, this is not a standard
practice.

Women of childbearing potential may particularly benefit from the
application of molecular techniques for RBC antigenmatching, allowing
for rapid and accuratematchingbeyondABO, RhD/CE andKell to further
prevent sensitization from occurring [98, 99], but challenges and bar-
riers remain. One of the major barriers is cost. Molecular RBC matching
has yet to be shown to be cost-effective even in a highly transfused pop-
ulation of patients [100, 101]; however, the cost of the testing is con-
stantly decreasing due to technological advances allowing for
increased automation and higher throughput testing. Another barrier
is implementation. In a retrospective study designed to assess the influ-
ence of extended matching at the time of blood transfusion on the de-
velopment of clinically significant red cell antibodies associated with
HDFN, 49% of mothers who received blood products from a center
that provided extended matching also received transfusions outside of
that center [91]. Though few mothers in this study were sensitized
due to transfusion, for an extended matching strategy to be successful,
it must be adopted universally.

RhIg, which prevents active sensitization to RhD after the mother
has been exposed through pregnancy, has been critical in decreasing
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the frequency of HDFN due to anti-D. Traditional RhIg is a highly puri-
fied, polyclonal product derived from sensitized plasma donors. How-
ever, novel recombinant preparations are being developed [102, 103].
Current standards in the United States recommend the administration
of RhIg in mothers who are RhD negative at 28 weeks gestation and
again at parturition, as well as within 72 h of other expected exposure
to fetal antigens (ectopic pregnancy, termination, chorionic villus sam-
pling, abdominal trauma, amniocentesis, etc.) [104, 105]. The idea of
passive antibody to prevent active sensitization came from the observa-
tion that fewer RhDnegativemotherswhowere ABO incompatiblewith
their fetuses became sensitized to RhD, as compared to mothers were
ABO compatible with their fetuses, thought to be due to early clearance
of the RhD positive cells because of ABO incompatibility. The actual
mechanism is likely more complex and multifactorial [106, 107]; how-
ever, the clinical benefit is well recognized. Initially only given at partu-
rition, mothers were still found to be sensitized, so earlier dosing at 28
weeks was recommended to further decrease sensitization rates. With
adequate implementation and dosing, rates of RhD negative mothers
becoming sensitized during pregnancy with an RhD positive fetus is
less than 1% [108-114]. Recent Cochrane review of the efficacy of RhIg
found few direct benefits to the mother or fetus; however, it concluded
that the degree of protection afforded subsequent pregnancies could
not be assessed and further longitudinal research is needed [115].

Dosing of RhIg at parturition is reliant upon accurate measurements
of the degree of FMH. Maternal blood is screened for FMH using an
erythrocyte rosette test which will cause agglutination visible with
lightmicroscopy if RhDpositive fetal cells are present inmaternal circu-
lation [9]. If negative, a standard dose of RhIg is delivered. If positive, fur-
ther quantitation using the Kleihauer-Betke test to calculate of the
degree of FMH is necessary to determine howmuch RhIg should be ad-
ministered. The Kleihauer-Betke test uses acid elution, to which cells re-
plete with hemoglobin F are resistant, to quantitate the degree of FMH.
This technique relies on subjective quantitation of the number of cells
containing hemoglobin F. It may also be inaccurate in instances where
mothers have conditions that allow for persistence of hemoglobin F in
circulation [9]. This may result in under dosing or over dosing RhIg as
one 300mcg dose of RhIg is considered appropriate for 15 mL of fetal
RBCs inmaternal circulation.More objective testing for FMH can be per-
formed using flow cytometric methods, directly measuring the concen-
tration of RhD antigen or hemoglobin F in maternal circulation [116,
117]. Using anti-F antibodies and flow cytometry, circulating fetal hem-
orrhage of b2.0 mL is detectable [118], and can distinguish maternal
cells carrying hemoglobin F from fetal cells [119]. These techniques
can be readily adapted to detect other discordant antigens that may
be present on fetal cells, and not maternal cells [120]. Unfortunately,
the use of flow cytometric detection and quantitation of FMH is limited
due to long-standing national standards of care and equipment and
staffing requirements [121].

Maternal obesity, defined as a BMI ≥ 30, may also affect efficacy of
RhIg prophylaxis as standard dosing calculations for RhIg are based on
a maternal blood volume estimate of 5000 mL. In obese mothers, 5000
mL is likely an underestimate of total blood volume (TBV), resulting in
under dosing RhIg [122]. Obesemothers also face challenges in RhIg ad-
ministration, which is recommended to be intramuscular (IM). Due to
concerns about poor absorption of RhIg from the subcutaneous tissue,
intravenous administration should be considered in mothers with sig-
nificant adiposity that precludes IM administration [123]. Because of
these challenges, concern has been raised that the rates of anti-D
HDFN will rise along with the obesity epidemic unless providers accu-
rately dose and administer RhIg.

Recent focus has shifted to avoid unnecessary RhIg exposure to
motherswho type as RhDnegative, butwhomay be one of the common
forms of weak RhD. RhD is a large, multi-pass protein present on RBCs
that exhibits a lot of genetic variation. Certain genetic mutations, often
coding for the transmembrane or intracellular trafficking portions of
the RhD protein, result in weakened RhD expression on RBCs [124].
These mutations do not affect the extracellular epitopes expressed by
RhD; therefore, individuals with the most common of these weak RhD
mutations, type 1, 2 and 3, are not at risk to form an anti-D. Historically,
mothers who demonstrate weakened D expression were given RhIg as
though they were RhD negative. However, with specialized genotyping
for weak D type 1, 2 and 3, those mothers can be excluded from receiv-
ing unnecessary doses of RhIg [125]. Evidence suggests that this is not
only cost-neutral for care,weighing the cost ofmolecular testing against
the savings of avoided RhIg doses, but also clinically beneficial [126].
Current ACOG guidelines address the potential to avoid unnecessary
RhIg administration in mothers who demonstrate decreased RhD ex-
pression using standard blood banking techniques and molecularly
type asweak D type 1, 2 and 3. However, they recommend RhIg admin-
istration in the appropriate clinical scenarios until further cost–benefit
analysis is performed [12].

Previously sensitized mothers with severely affected fetuses may be
exposed to additional RBC antigens at the time of in-utero transfusion,
due to the risk of bleeding associated with the procedure. Up to 25% of
mothers who receive in-utero transfusion form a new alloantibody,
which may impact future pregnancies [127, 128]. Further sensitization
to RhCE and Kell are thought to be due to fetally derived cells; however,
sensitization to Duffy, Kidd and S antibodies are often due to exposure
to the transfused unit [127]. Further matching of the donor for in-
utero transfusions to maternal antigens may decrease further
alloimmunization to those antigens by 60%; however, it is not protective
against further sensitization to fetal antigens [129]. Units that require
extended matching to the maternal antigens require particular coordi-
nation with the blood bank, but may protect future pregnancies from
additional antibody exposure.

In summary, care of the mother and fetus during a sensitized
pregnancy requires a multidisciplinary approach that includes obstetri-
cians, maternal-fetal-medicine specialists and transfusion medicine
specialists. Detection of antibodies and assessment of titers may
be relevant to predict clinical course. Mothers who are sensitized
require frequent monitoring and fetal assessments, including MCA-
PSV Dopplers. In-utero transfusions may be required for severely
affected fetuses. Subsequent pregnanciesmay bemore severely affected
and early interventions with IVIg and maternal plasma exchange may
be beneficial.

To prevent transfusion-caused RBC sensitization from occurring in
women of childbearing potential preventative transfusion strategies
could be universally adopted. Novel murine models of transfusion and
HDFN are helping to further elucidate recipient and donor factors that
influence rates of RBC sensitization; such has inflammatory status and
product storage duration. Secondary prophylaxis with accurate deter-
mination of FMH and RhIg administration has been shown to be highly
effective in preventing RhD sensitization. The use of molecular tech-
niques to assess paternal zygosity, fetal antigen carriage and maternal
weak D typing, are allowing for more precise, personalized medicine
and prevent over-use of unnecessary RhIg doses. Highly specialized
blood units that are multiply antigen negative may be required for in-
utero transfusion, necessitating clear communication and coordination
between clinicians and their transfusion services.
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